|
|
Microbial mechanism of magnetite addition on the biodegradation of phenanthrene in sediments |
WANG Hong-yang1,2,3, YOU Jia3,4, YAN Zai-sheng2,3, JIANG He-long2,3, YE Hua-xiang1 |
1. School of Geographical Sciences, Harbin Normal University, Harbin 150025, China; 2. Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 3. State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 4. School of Civil Engineering, Southeast University, Nanjing 210096, China |
|
|
Abstract In the surface environments, magnetite (Fe3O4) serves as an electron receptor and donor for microbial extracellular respiration, facilitating interspecies electron transfer as a means to promote the biodegradation of organic pollutants. It has gradually found application in the realm of water pollution remediation. The interplay between magnetite and the mineral-microbe interface assumes a profoundly pivotal role. However, the biodegradation mechanism of PAHs in sediments mediated by different morphologies of magnetite remains unclear. In this paper, two different morphologies of magnetite (micron Fe3O4 and nano Fe3O4) were prepared to investigate the effect of the magnetite on the biodegradation of PAHs in sediments. Under aerobic conditions, the addition of magnetite did not appreciably reduce the total content of PAHs and certain high-ring PAHs in the sediment. Nevertheless, the introduction of magnetite significantly diminished the levels of low-ring PAHs (naphthalene and phenanthrene) in the sediment. To further investigate the anaerobic biodegradation influence of magnetite on PAHs under varying redox conditions, with phenanthrene as the target pollutant, enrichment and cultivation experiments were conducted with the indigenous degrading microbial communities in the sediment. Two forms of magnetite were introduced under different redox conditions. The results revealed that the augmented treatment with magnetite or electron acceptors somewhat promoted anaerobic biodegradation. Under natural attenuation conditions, the independent addition of micron Fe3O4 significantly enhanced phenanthrene degradation, whereas the effect of nano Fe3O4 on phenanthrene degradation was more pronounced under sulfate and nitrate reducing conditions.The phenanthrene degradation rate constant under sulfate reducing condition was 1.39 times higher than that of the control treatment. Electron transfer system (ETS) activity demonstrated that the addition of Fe3O4 significantly enhances microbial respiration activity. Compared with the control, the ETS activity of the nano-Fe3O4 and the micro-Fe3O4 treatment increased by 441.7%~511.2% and 113.8%~141.1%, respectively. The microbial community structure indicated that the addition of Fe3O4 increased the abundance of aromatic compound-degrading bacteria such as Hydrogenophaga and Ignavibacterium, and relative to micron Fe3O4, nano Fe3O4 augments the abundance of PAH-degrading bacteria, Achromobacter and Ensifer. Furthermore, nano Fe3O4 may mediate intermicrobial electron transfer by releasing more Fe(II) and Fe(III). These findings contribute to a deeper comprehension of the pivotal role of magnetite in the biodegradation of organic pollutants, offering a potential approach for the remediation of contaminated sediments.
|
|
|
|
|
|
[1] Yan Z, Song N, Wang C, et al. Functional potential and assembly of microbes from sediments in a lake bay and adjoining river ecosystem for polycyclic aromatic hydrocarbon biodegradation [J]. Environmental Microbiology, 2021,23(2):628-640.DOI:10.1111/ 1462-2920.15104. [2] Zhao Z, Zhang L, Wu J. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediments from lakes along the middle-lower reaches of the Yangtze River and the Huaihe River of China [J]. Limnology and Oceanography, 2016,61(1):47-60.DOI: 10.1002/lno.10197. [3] 李 伟,王华伟,孟祥宇,等.表面活性剂淋溶-化学氧化处理焦化场地高环多环芳烃污染土壤 [J]. 中国环境科学, 2023,43(12):6474-6481. Li W, Wang H W, Meng X Y, et al. Surfactant-enhanced washing- chemical oxidation treatment of soil contaminated with high- molecular-weight and polycyclic aromatic hydrocarbons at a coking plant site [J]. China Environmental Science, 2023,43(12):6474- 6481(in Chinese with English abstract). DOI:10.19674/ 2023.0815. [4] 金 苗,吴敬禄,占水娥,等.乌兹别克斯坦阿姆河流域水体中多环芳烃的分布、来源及风险评估 [J]. 湖泊科学, 2022,34(3):855-867. Jin M, Wu J L, Zhan S E, et al. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in waters of Amu Darya Basin Uzbekistan [J]. Journal of Lake Sciences, 2022, 34(3):855-867.DOI:10.18307/2022.0312. [5] Yan Z, Hao Z, Wu H, et al. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments [J]. Journal of Hazardous Materials, 2019,367:99-108.DOI: 10.1016/j.jhazmat.2018.12.071. [6] Yan H, Yan Z, Wang L, et al. Toward understanding submersed macrophyte Vallisneria natans-microbe partnerships to improve remediation potential for PAH-contaminated sediment [J]. Journal of Hazardous Materials, 2022,425: 127767.DOI:10.1016/j.jhazmat.2021.127767. [7] 陶 澍,骆永明,朱利中,等.典型微量有机污染物的区域环境过程 [J]. 环境科学学报, 2006,(1):168-171. Tao S, Luo Y M, Zhu L Z, et al. Regional environmental processes of typical trace organic pollutants [J]. Acta Scientiae Circumstantiae, 2006,(1):168-171(in Chinese).DOI:10.13671/j.hjkxxb.2006.01.028. [8] 万宏滨,周 娟,罗 端,等.长江中游湖泊表层沉积物多环芳烃的分布来源特征及其生态风险评价 [J]. 湖泊科学, 2020,32(6):1632-1645. Wan H B, Zhou J, Luo D, et al. Distribution, source characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in surface sediments of lakes along the middle reaches of the Yangtze River [J]. Journal of Lake Sciences, 2020,32(6):1632-1645(in Chinese with English abstract). DOI:10.18307/2022.0606. [9] Xu M, He Z, Zhang Q, et al. Responses of aromatic-degrading microbial communities to elevated nitrate in sediments [J]. Environmental Science & Technology, 2015,49(20):12422-12431. DOI:10.1021/acs.est.5b03442. [10] 吴庆龙,江和龙.中国湖泊微生物组研究 [J]. 中国科学院院刊, 2017,32(3):273-279. Wu QL, Jiang HL. China Lake Microbiome Project [J]. Bulletin of Chinese Academy of Sciences, 2017,32(3):273-279.DOI10.16418/ j.issn.1000-3045.2017.03.008. [11] 许玫英,虞志强,杨永刚,等.微生物厌氧呼吸与有机污染水体沉积物修复 [J]. 微生物学杂志, 2017,37(2):1-11. Xu MY, Yu ZQ, Yang YG, et al. Microbial anaerobic respiration and remediation of aquatic sediments contaminated by refractory organic pollutants [J]. Journal of Microbiology, 2017,37(2):1-11.DOI:10. 3969/j.issn.1005-7021.2017.02.001. [12] Xu M, Zhang Q, Xia C, et al. Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments [J]. The ISME Journal, 2014,8(9):1932-1944. DOI:10.1038/ismej.2014.229. [13] Zhang T, Gannon S M, Nevin K P, et al. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor [J]. Environmental Microbiology, 2010,12(4):1011-1020.DOI:10.1111/j.1462-2920.2009. 02145.x. [14] Yan Z, Song N, Cai H, et al. Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide [J]. Journal of Hazardous Materials, 2012,199-200:217-225.DOI:10. 1016/j.jhazmat.2011.10.087. [15] Hao Z, Wang Q, Yan Z, et al. Novel magnetic loofah sponge biochar enhancing microbial responses for the remediation of polycyclic aromatic hydrocarbons-contaminated sediment [J]. Journal of Hazardous Materials, 2021,401:123859-123859.DOI:10.1016/j. jhazmat, 2020.123859. [16] Lovley D R, Holmes D E. Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms [J]. Nature Reviews Microbiology, 2022,20(1):5-19.DOI:10.1038/s41579-021- 00597-6. [17] 刘 娟,李晓旭,刘 枫,等.铁氧化物-微生物界面电子传递的分子机制研究进展 [J]. 矿物岩石地球化学通报, 2018,38(1):39-47. Liu J, Li XX, Liu F, et al. Research advantages on molecular mechanisms of interfacial electron transfer between iron oxide and microbe [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018,38(1):39-47.DOI:10.19658/j.issn.1007-2802.2018.37.015. [18] 王 竞,孙煜姣,马 姝,等.亚微米磁铁矿强化反硝化降解苯酚和喹啉 [J]. 科学通报, 2020,65(27):2914-2921. Wang J, Sun Y J, Ma S, et al. Submicron magnetite enhanced simultaneous denitrification and degradation of phenol and quinoline [J]. Chinese Science Bulletin, 2020,65(27):2914-2921.DOI:10.1360/ TB-2020-0752. [19] Baragaño D, Alonso J, Gallego JR, et al. Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs [J]. Chemical Engineering Journal, 2020,399:125809.DOI:10.1016/j.cej. 2020.125809. [20] Shen X, Dong W, Wan Y, et al. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure [J]. Journal of Environmental Management, 2021,299:113648.DOI:10.1016/j.jenvman, 2021.113648. [21] Zhou Y-L, Yang Y, Chen M, et al. To improve the performance of sediment microbial fuel cell through amending colloidal iron oxyhydroxide into freshwater sediments [J]. Bioresource Technology, 2014,159:232-239.DOI:10.1016/j.biortech.2014.02.082. [22] 李美兰,豆小喻,何 娇,等.羧基化磁性Fe3O4复合材料的制备及其对水体中Pb2+的吸附研究 [J]. 中国塑料, 2021,35(10):37-44. Li M L, Dou X Y, He J, et al. Synthesis of carboxylated magnetic Fe3O4 composites and their adsorption behavior to Pb2+[J]. China Plastics, 2021,35(10):37-44. [23] 秦润华,姜 炜,刘宏英,等.纳米磁性四氧化三铁的制备及表征 [J]. 材料导报, 2003,17:66-68. Qin R H, Jiang W, Liu H Y, et al. Preparation and characterization of nanometer magnetite [J]. Materials Report, 2003,17:66-68. [24] Beate A, Edon L. Magnetic Nanoparticles: Properties, Synthesis and Applications [N]. New York: Nova Science, 2012:249-271. [25] 谌 岩,裴宝全.影响液相法制备纳米粒子因素的研究 [J]. 物理测试, 2001,5:3-31. Chen Y, Pei BQ. Studies on the effect factors on preparation magnetite nanoparticles [J]. Physics Examination and Testing, 2001,5:3-31. DOI:10.13228/j.boyuan.issn1001-0777.2001.05.002. [26] 张 雨,晏再生,吴慧芳,等.沉水植物苦草(Vallisneria natans)对多环芳烃污染沉积物的修复作用 [J]. 湖泊科学, 2018,30(4):1012-1018. Zhang Y, Yan Z S, Wu H F, et al. Remedial function of submersed macrophyte Vallisneria natans to PAHs-contaminated sediments [J]. Journal of Lake Sciences, 2018,30(4):1012-1018(in Chinese with English abstract).DOI:10.18307/2018.0414. [27] 郝 征.磁性炭基复合体对多环芳烃污染沉积物的修复作用及机制 [D]. 南京:中国科学院南京地理与湖泊研究所, 2019. Hao Z. Remediation effect and mechanism of magnetic carbonaceous composites on polycyclic aromatic hydrocarbons-contaminated sediment [D]. Nanjing: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2019(in Chinese with English abstract). [28] Song N, Yan Z, Xu H, et al. Development of a sediment microbial fuel cell-based biosensor for simultaneous online monitoring of dissolved oxygen concentrations along various depths in lake water [J]. Science of The Total Environment, 2019,673:272-280.DOI:10.1016/j.scitotenv. 2019.04.032. [29] 金幼平,杨雪英,陈 罡,等.活性污泥INT-脱氢酶活性检测方法的改进 [J]. 中国给水排水, 2016,32(22):153-156. Jin Y P, Yang X Y, Chen G, et al. Improvement of INT- dehydrogenase activity detection method of activated sludge [J]. China Water & Wastewater, 2016,32(22):153-156.DOI:10.19853/j.zgjsps. 1000-4602.2016.22.035. [30] Nieman J K C, Sims R C, Mclean J E, et al. Fate of pyrene in contaminated soil amended with alternate electron acceptors [J]. Chemosphere, 2001,44(5):1265-1271.DOI:10.1016/S0045-6535(00) 00304-0. [31] 侯晓鹏,李春华,叶 春,等.不同电子受体作用下微生物降解多环芳烃研究进展 [J]. 环境工程技术学报, 2016,6(1):78-84. Hou X P, Li C H, Ye C, et al. Research progress of biodegradation of polycyclic aromatic hydrocarbons with amendment of different electron acceptors [J]. Journal of Environmental Engineering Technology, 2016,6(1):78-84. DOI:10.3969/j.issn.1674-991X.2016. 01.012. [32] Dou J, Liu X, Ding A. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions [J]. Journal of Hazardous Materials, 2009,165(1-3):325-331.DOI:10.1016/j.jhazmat. 2008.10.002. [33] Zhang L, Qiu X, Huang L, et al. Microbial degradation of multiple PAHs by a microbial consortium and its application on contaminated wastewater [J]. Journal of Hazardous Materials, 2021,419:126524. DOI:10.1016/j.jhazmat.2021.126524. [34] 袁 磊,毕学军.铁盐对活性污泥微生物DHA与ETS活性的影响研究 [J]. 环境工程, 2010,28(6):97-99. Yuan L, Bi X J. Effect of ferric salt on Microbial DHA and ETS activity in activated sludge [J]. Environmental Engineering, 2010, 28(6):97-99.DOI:10.13205/j.hjgc.2010.06.004. [35] 尹 军,吴相会,王晓玲,等.用TTC-ETS和INT-ETS表征微生物活性 [J]. 中国给水排水, 2008,24(7):8-11. Yin J, Wu X H, Wang X L, et al. Application of TTC-ETS and INT-ETS activities to characterizing microbial activity of sludge in MUCT process [J]. China Water & Wastewater, 2008,24(7):8-11. [36] 赵 颖,王 飞.白洋淀湿地芦苇根际土壤微生物电子传递体系(ETS)活性的研究 [J]. 安全与环境学报, 2016,16(4):363-357. Zhao Y, Wang F. On the electronic transmission system (ETS) activity of reed rhizosphere soil in Baiyangdian Wetland [J]. Journal of Safety and Environment, 2016,16(4):363-357.DOI:10.13637/j.issn.1009- 6094.2016.04.072. [37] Yang X, Li E, Liu F, et al. Interactions of PAH-degradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community [J]. Journal of Hazardous Materials, 2020,388:122068. DOI:10.1016/j.jhazmat.2020.122068. [38] Yi X, Jing D, Wan J, et al. Temporal and spatial variations of contaminant removal, enzyme activities, and microbial community structure in a pilot horizontal subsurface flow constructed wetland purifying industrial runoff [J]. Environmental Science and Pollution Research, 2016,23(9):8565-8576.DOI:10.1007/s11356-016-6083-9. [39] Xu M, He Z, Zhang Q, et al. Responses of aromatic-degrading microbial communities to elevated nitrate in sediment [J]. Environmental Science & Technology, 2015,49(20):12422-12431. DOI: 10.1021/acs.est.5b03442. [40] Zhou Z, Yao Y, Wang M, et al. Co-effects of pyrene and nitrate on the activity and abundance of soil denitrifiers under anaerobic conditio [J]. Archives of Microbiology, 2017,199(8):1091-1101.DOI:10.1007/ s00203-017-1380-3. [41] Niepceron M, Martin-Laurent F, Crampon M, et al. Gamma Proteobacteria as a potential bioindicator of a multiple contamination by polycyclic aromatic hydrocarbons (PAHs) in agricultural soils [J]. Environmental Pollution, 2013,180:199-205.DOI:/10.1016/j.envpol. 2013.05.040. [42] Niepceron M, Florence P K, Chloe M, et al. Both Cycloclasticus spp. and Pseudomonas spp. as PAH-degrading bacteria in the Seine estuary (France) [J]. Federation of European Microbiological Societies, 2010,71:137-147. DOI:10.1111/j.1574-6941.2009.00788.x [43] Rabodonirina S, Rasolomampianina R, Krier F, et al. Degradation of fluorene and phenanthrene in PAHs-contaminated soil using Pseudomonas and Bacillus strains isolated from oil spill sites [J]. Journal of Environmental Management, 2019,232:1-7.DOI:10.1016/j. jenvman.2018.11.005. [44] Tibor B, Flóra S, István S. Aerobic and oxygen-limited naphthalene- amended enrichments induced the dominance of Pseudomonas spp [J]. Applied Microbiology and Biotechnology, 2020,104:6023-6043. DOI:10.1007/s00253-020-10668-y. [45] Janbandhu A, Fulekar M H. Biodegradation of phenanthrene using adapted microbial consortium isolated from petrochemical contaminated environment [J]. Journal of Hazardous Materials, 2011, 187(1-3):333-340.DOI:10.1007/s12088-012-0265-z. [46] Zhang S Y, Wang Q F, Xie S G. Molecular characterization of phenanthrene-degrading methanogenic communities in leachate- contaminated aquifer sediment [J]. International Journal of Environmental Science and Technology, 2012,9(4):705-712.DOI:10. 1007/s13762-012-0098-7. [47] 宁燕宁.植物落叶浸出液为电子供体的反硝化工艺 [D]. 上海:上海师范大学, 2022. Ning Y N. Denitrification process using plant deciduous extract as electron donor [D]. Shanghai: Shanghai Normal University, 2022 (in Chinese with English abstract). [48] Chen Y, Zhao Z, Peng Y, et al. Performance of a full-scale modified anaerobic/anoxic/oxic process: High-throughput sequence analysis of its microbial structures and their community functions [J]. Bioresource Technology, 2016,220:225-232.DOI:10.1016/j.biortech.2016.07.095. [49] 夏俊涛.污水处理系统中芳香族有机对耐药基因的影响机理及应对策略研究 [D]. 南京:南京大学, 2020. Xia J T. A study on the mechanisms and the coping strategies of the influence of aromatic compounds on bacterial antibiotic resistance genes in wastewater treatment systems [D]. Nanjing: Nanjing University, 2020 (in Chinese with English abstract). [50] 陈 星.长江口滨岸PAHs赋存特征和微生物降解作用研究 [D]. 青岛:山东师范大学, 2019. Chen X. Study on the occurrence characteristics and bio-degradation of PAHs in the Yangtze River Estuary [D]. Qingdao: Shandong Normal University, 2019 (in Chinese with English abstract). [51] Tsuneda S, Miyauchi R, Ohno T, et al. Characterization of denitrifying polyphosphate-accumulating organisms in activated sludge based on nitrite reductase gene [J]. Journal of Bioscience and Bioengineering, 2005,99(4):403-407.DOI:10.1263/jbb.99.403. [52] Andreoni V, Cavalca L, Rao M A, et al. Bacterial communities and enzyme activities of PAHs polluted soil [J]. Chemosphere, 2004,57(5):401-412.DOI:10.1016/j.chemosphere.2004.06.013. [53] Muratova A, Pozdnyakova N, Makarov O, et al. Degradation of phenanthrene by the rhizobacterium Ensifermeliloti [J]. Biodegradation, 2014,25(6):787-795.DOI:10.1007/s10532-014-9699-9. [54] Muratova A, Dubrovskaya E, Golubev S, et al. The coupling of the plant and microbial catabolisms of phenanthrene in the rhizosphere of Medicago sativa [J]. Journal of Plant Physiology, 2015,188:1-8.DOI: 10.1016/j.jplph.2015.07.0140176-1617. [55] 孟建宇,李 蘅,唐 凯,等.两株氢噬胞菌的萘降解特性分析 [J]. 化工环保, 2017,37(3):300-303. Meng J Y, Li H, Tang K, et al. Analysis on naphthalene degradation characteristics of two Hydrogenophaga sp [J]. Strains. Environmental Protection of Chemical Industry, 2017,37(3):300-303(in Chinese with English abstract). DOI:10.3969/j.issn.1006-1878.2017.03.008. [56] Yan Z, Zhang Y, Wu H, et al. Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a]pyrene biodegradation [J]. RSC Advances, 2017,7,46690-46698.DOI:10.1039/c7ra09274a. [57] Acer Ö, Johnston G P, Lineman D, et al. Evaluating degradation of polycyclic aromatic hydrocarbon (PAH) potential by indigenous bacteria isolated from highly contaminated riverbank sediments [J]. Environmental Earth Sciences, 2021,80(23).DOI: 10.1007/s12665- 021-10070-5. [58] Chang W, Um Y, Hoffman B, et al. Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities [J]. Biotechnology Progress, 2005,21(3):682-688. [59] 吕 莹,胡学武,陈素素,等.多环芳烃污染土壤的微生物修复技术研究进展 [J]. 化工进展, 2022,41(6):3249-3261. Lv Y, Hu X W, Chen S S, et al. Advances in microbial remediation of soils polluted by polycyclic aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress. 2022,41(6):3249-3261.DOI:10. 16085/j.issn.1000-6613.2021-1482. [60] Ye Q, Zhang Z, Huang Y, et al. Enhancing electron transfer by magnetite during phenanthrene anaerobic methanogenic degradation [J]. International Biodeterioration & Biodegradation, 2018,129:109- 116.DOI:10.1016/j.ibiod.2018.01.012. [61] Chang W, Um Y, Holoman T R P. Polycyclic aromatic hydrocarbon (PAH) degradation coupled to methanogenesis [J]. Biotechnology Letters, 2006,28(6):425-430.DOI:10.1007/s10529-005-6073-3. [62] Lu X-Y, Li B, Zhang T, et al. Enhanced anoxic bioremediation of PAHs-contaminated sediment [J]. Bioresource Technology, 2012,104: 51-58.DOI:10.1016/j.biortech.2011.10.011. [63] 朱剑锋,王艳琼,王红武.铁氧化物促进微生物直接种间电子传递的机理及其研究现状 [J]. 环境化学, 2022,41(6):1856-1868. Zhu J F, Wang Y Q, Wang H W. A review on enhancement of direct interspecies electron transfer induced by iron oxides and its mechanism [J]. Environmental Chemistry, 2022,41(6):1856-1868. [64] Han T, Chen X, Wang K, et al. Electron transfer by ion conductance in a soil bioelectric fiel [J]. Sustainable Energy Technologies and Assessments, 2023,55:102902.DOI:10.1016/j.seta.2022.102902. [65] 李诗阳.铁氧化物强化厌氧生物处理过程中胞外电子传递及其调控 [D]. 大连:大连理工大学, 2019. Li S Y. Enhancement and regulation of extracellular electron transferin anaerobic biological treatment by lron oxides [D]. Dalian: Dalian University of Technology, 2019 (in Chinese with English abstract). [66] 王 莹,刘同旭,李芳柏.微生物—矿物间半导体介导电子传递机制研究进展 [J]. 地球科学进展, 2016,31(4):347-356. Wang Y, Liu T X, Li F B. Advances in the semiconductor-mediated electron transfer mechanism at microbe-mineral interface [J]. Advances in Earth Science, 2016,31(4):347-356.DOI:10.11867/ j.issn.1001-8166.2016.04.0347. [67] 彭子淇,罗宇同,陆阳阳,等.我国主要河口沉积物中多环芳烃细菌降解及生物修复强化方式的研究进展 [J]. 微生物学报, 2022,62(6): 2311-2327. Peng Z Q, Luo Y T, Lu Y Y, et al. Degradation of polycyclic aromatic hydrocarbons in sediments of main estuaries in China by bacteria and the methods to enhance the degradation [J]. Acta Microbiologica Sinica, 2022,62(6):2311-2327.DOI:10.13343/j.cnki.wsxb.20220272. [68] 孙 娇,张作涛,郭海礁,等.多环芳烃厌氧生物降解研究进展 [J]. 微生物学报, 2020,60(12):2844-2861. Sun J, Zhang Z T, Guo H J, et al. Progresses in anaerobic microbial degradation of polycyclic aromatic hydrocarbons [J]. Acta Microbiologica Sinica, 2020,60(12):2844-2861.DOI:10.13343/j.cnki. wsxb.20200276. [69] Sun S, Wang H, Yan K, et al. Metabolic interactions in a bacterial co-culture accelerate phenanthrene degradation [J]. Journal of Hazardous Materials. 2021,403:123825.DOI:10.1016/j.jhazmat. 2020. 123825. |
[1] |
TANG Feng, SHA Qing-e, LIU Ying-ying, WENG Shu-juan, ZHOU Ning, CHEN Hao-qi, LIU Lu-yun, SI-TU Shu-ping, ZHONG Zhuang-min, XU Guan-ying, CHEN Duo-hong, ZHENG Jun-yu. Evolutionary characteristics of anthropogenic polycyclic aromatic hydrocarbon emissions in Guangdong Province from 2006 to 2020[J]. CHINA ENVIRONMENTAL SCIENCECE, 2025, 45(1): 19-29. |
|
|
|
|