|
|
Research on spatiotemporal patterns of heavy metal leaching and migration in coal gangue backfill subsidence area |
FENG Yin-cheng, ZHAO Kang, TIAN Xiang-qin, MA Chao, NIE Jing-lei, HU Hua-long |
Solids Waste and Chemicals Management Center, Ministry of Ecology and Environment, Beijing 100029, China |
|
|
Abstract The collaborative ecological governance demonstration test project in the coal gangue backfills subsidence area of a city in Shaanxi Province provided an example for this study. This research investigated the environmental pollution risks in the backfill area, where coal gangue was used as the backfill material. It analyzed the spatiotemporal laws of heavy metal leaching and migration. The variation and processes of heavy metals in the soil were simulated using Hydrus-1D.A comparison of measured values from the soil column experiment with the simulated values verified the model, and the analysis identified relationships between infiltration distances at different periods and concentration equilibrium times in various soil layers. The results demonstrated that the established model effectively simulated the migration and change patterns of heavy metals in the soil of the backfill area. Over time, the leaching concentrations of heavy metals varied with depth, ranked as Cr(Ⅵ) = Pb>Ni>Hg, with maximum migration distances of 21.60, 21.60, 20.70 and 16.20m, respectively. At different soil layer depths, the leaching concentrations of heavy metals followed the order Pb> Cr(Ⅵ)>Ni>Hg. The concentration trends increased rapidly and stabilized, with none exceeding the limit values. The findings confirmed no significant environmental pollution impacts occurred in the coal gangue backfill subsidence area.
|
Received: 06 August 2024
|
|
Corresponding Authors:
赵康,教授,zhaok_666666@163.com
E-mail: zhaok_666666@163.com
|
|
|
|
[1] Zou C N, Ma F, Pan S Q, et al. Global energy transition revolution and the connotation and pathway of the green and intelligent energy system[J]. Petroleum Exploration and Development Online, 2023, 50(3):722-740. [2] 李辉,庞博,朱法华,等.碳减排背景下我国与世界主要能源消费国能源消费结构与模式对比[J].环境科学, 2022,43(11):5294-5304. Li H, Pang B, Zhu F H, et al. Comparative energy consumption structure and mode between china and major energy-consuming countries under the background of carbon emission reduction[J]. Environmental Science, 2022,43(11):5294-5304. [3] 葛建华,丁雨薇,李佳,等.高潜水位采煤沉陷区微塑料赋存特征及风险评估[J].中国环境科学, 2024,44(4):2327-2335. Ge J H, Ding Y W Li J, et al. Characteristics and risk assessment of microplastics in coal mining subsidence area with high groundwater level[J]. China Environmental Science, 2024,44(4):2327-2335. [4] 琚成远,浮耀坤,陈超,等.神南矿区采煤沉陷裂缝对土壤表层含水量的影响[J].煤炭科学技术, 2022,50(4):309-316. Ju C Y, Fu Y K, Chen C, et al.Influence of coal mining subsidence cracks on soil surface water content in Shennan Mining Area[J]. Coal Science and Technology, 2022,50(4):309-316. [5] 郭家新,胡振琪,袁冬竹,等.黄河流域下游煤矿采煤塌陷区耕地破碎化动态演变--以山东济宁市为例[J].煤炭学报, 2021,46(9):3039-3055. Guo J X, Hu Z Q, Yuan D Z, et al. Dynamic evolution of cultivated land fragmentation in coal mining subsidence area of the Lower Yellow River Basin:A case study of Jining city, Shandong Province[J].Journal of China Coal Society, 2021,46(9):3039-3055. [6] 吴喜军,李怀恩,董颖,等.陕北地区煤炭开采等人类活动对河道径流影响的定量识别[J].环境科学学报, 2014,34(3):772-780. Wu X J, Li H E, Dong Y, et al. Quantitative identification of coal mining and other human activities onriver runoff in northern Shaanxi region[J]. Acta Scientiae Circumstantiae, 2021,46(9):3039-3055. [7] 张彪,李岱青,高吉喜,等.我国煤炭资源开采与转运的生态环境问题及对策[J].环境科学研究, 2004,(6):35-38. Zhang B, Li D Q, Gao X J, et al. The eco-environment problems and countermeasures to be taken for coal development and transfer in China[J]. Research of Environmental Sciences, 2004,(6):35-38. [8] 王心义,杨建,郭慧霞.矿区煤矸石堆放引起土壤重金属污染研究[J].煤炭学报, 2006,(6):808-812. Wang X Y, Yang J, Guo H X, et al. Study on heavy metals in soil contaminated by coal waste rock pile[J]. Journal of China Coal Society, 2006,(6):808-812. [9] 赵昂然,任强强,佟会玲.垃圾焚烧飞灰添加工业固废的玻璃化研究[J].中国环境科学, 2023,43(2):686-693. Zhao A R, Ren Q Q, Dong H L. Study on vitrification of MSWI fly ash with industrial solid waste[J]. China Environmental Science, 2023,43(2):686-693. [10] 尚誉,桑楠.煤矸石堆积区周边土壤重金属污染特征与植物毒性[J].环境科学, 2022,43(7):3773-3780. Shang Y, Sang N. Pollution Characteristics and phytotoxicity of heavy metals in the soil around coal gangue accumulation area[J]. Environmental Science, 2022,43(7):3773-3780. [11] 程博,何环,谭添,等.嗜酸氧化亚铁硫杆菌淋溶煤矸石过程中铁锰铬形态的释放特征[J].环境工程学报, 2017,11(7):4404-4410. Cheng B, He H, Tian T, et al. Migration and enrichment of arsenic during coal washing Liberation characteristics of iron manganese and chromium fraction in coalgangue during Acidithiobacillus ferrooxidans bioleaching process[J]. Chinese Journal of Environmental Engineering, 2017,11(7):4404-4410. [12] 马超,冯印成,赵康,等.我国矿产资源型城市"无废城市"建设路径探索[J].中国环境科学, 2024,44(9):5077-5084. Ma C, Feng Y C, Zhao K, et al. Exploring the construction path of"Zero-waste City" in mineral resource-based cities in China[J]. China Environmental Science, 2024,44(9):5077-5084. [13] 邰托娅,郑跃军,王金生.应用HYDRUS-1D模型模拟分析PFCs在土壤中的迁移特征[J].农业环境科学学报, 2018,37(10):2175-2182. Tai T Y, Zheng Y J, Wang J S, et al. Simulation and analysis of PFCs migration in the soil column using the Hydrus-1D model[J]. Journal of Agro-Environment Science, 2018,37(10):2175-2182. [14] 杨洋,李娟,李鸣晓,等.HYDRUS-1D软件在地下水污染源强定量评价中的应用[J].环境工程学报, 2014,8(12):5293-5298. Yang Y, Li J, Li M X, et al. Chinese journal of environmental engineering[J]. Chinese Journal of Environmental Engineering, 2018,37(10):2175-2182. [15] 张帅,李冰,王向华,等.基于Hydrus-1D预测模型的包气带溶质运移研究[J].干旱环境监测, 2021,35(3):97-102. Zhang S, Li B, Wang X H, et al. Study on solute transport in vadose zone based on Hydrus-1D model[J]. Arid Environmental Monitoring, 2021,35(3):97-102. [16] Aram A, John M B, A. J. Andrew B A, et al. Assessing the hydraulic reduction performance of HYDRUS-1D for application of alkaline irrigation in variably-saturated soils:Validation of pH driven hydraulic reduction scaling factors[J]. Agricultural Water Management, 2021,256. [17] Farhad M, Yasser A, Teymour S, et al. Investigation of heavy metalloid pollutants in the south of Tehran using kriging method and HYDRUS model[J]. Geoscience Letters, 2022,9(1):57-68. [18] 王国帅,史海滨,李仙岳,等.基于HYDRUS-1D模型的荒漠绿洲水盐运移模拟与评估[J].农业工程学报, 2021,37(8):87-98. Wang G S, Shi H B, Li X Y, et al. Simulation and assessment of water and salt transport in desert-oasis based on the HYDRUS-1D Model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(8):87-98. [19] Talat S, Reza M M, Majid A, et al. Modeling the effect of slope aspect on temporal variation of soil water content and matric potential using different approaches by HYDRUS-1D[J]. Geoderma Regional, 2023, 35:86-93. [20] Farshad K, Javad B, Vahid R, et al. Field evaluation and numerical simulation of water and nitrate transport in subsurface drip irrigation of corn using HYDRUS-2D[J]. Irrigation Science, 2023,42(2):327-352. [21] 罗杰,刘本华,徐晶,等.Hydrus-1D软件模拟污染土壤重金属溶质运移[J].济南大学学报(自然科学版), 2023,37(4):444-448. Luo J, Liu B H, Xu J, et al. Heavy metal migration in contaminated soil simulated by using Hydraus-1D Software[J]. Journal of University of Jinan (Science and Technology),2023,37(4):444-448. [22] 焦独醒,李家斌,李进花,等.应用HYDRUS-1D模型分析Cr (Ⅵ)在负载针铁矿的石英砂中的迁移特征[J].环境工程, 2023,41(S2):1186-1189,1195. Jiao D X, Li J B, Li J H, et al. Simulation of Cr (Vi) transport in goethite coated sand column by Hydrus-1d model[J]. Environmental Engineering, 2023,41(S2):1186-1189,1195. [23] 高震国,钟瑞林,杨帅,等.Hydrus模型在中国的最新研究与应用进展[J].土壤, 2022,54(2):219-231. Gao Z G, Zhong R L, Yang S, et al. Recent Progresses in Research and Applications of Hydrus Model in China[J]. Soils, 2022,54(2):219-231. [24] HJ/T20-1998工业固体废物采样制样技术规范[S]. HJ/T20-1998 Technical specifications on sampling and sample preparation from industry solid waste[S]. [25] HJ/T298-2007危险废物鉴别技术规范[S]. HJ/T298-2007 Technical specifications on identification for hazardous waste[S]. [26] GB18599-2001一般工业固体废物贮存和填埋污染控制标准[S]. GB18599-2001 Standard for pollution control on the non-hazardous industrial solid waste storage and landfill[S]. [27] GB8978-1996污水综合排放标准[S]. GB8978-1996 Integrated wastewater discharge Standard[S]. [28] GB 3838-2002地表水环境质量标准[S]. GB 3838-2002 Environmental quality standards for surface water[S]. [29] 林挺,罗飞,朱艳,等.Hydrus-1D模型在推导基于保护地下水的土壤风险控制值中的应用[J].环境科学, 2019,40(12):5640-5648. Lin T, Luo F, Zhu Y, et al. Calculation of the soil risk control value through a Hydrus-1D Model for groundwater protection[J]. Environmental Science, 2019,40(12):5640-5648. [30] 李玮,何江涛,刘丽雅,等.Hydrus-1D软件在地下水污染风险评价中的应用[J].中国环境科学, 2013,33(4):639-647. Li W, He J T, Liu L Y, et al. Application of Hydrus-1D software in groundwater contamination risk assessment[J]. China Environmental Science, 2013,33(4):639-647. [31] 曾季才,查元源,杨金忠.基于Richards方程切换的土壤水流及溶质运移数值模拟[J].水利学报, 2018,49(7):840-848. Zeng J C, Zha Y Y, Yang J Z. Numerical modeling of soil water flow and solute transport based on Richards'Equation switching[J]. Journal of Hydraulic Engineering, 2018,49(7):840-848. [32] 张炜,王浩远,赵玉华,等.基于HYDRUS-1D生物滞留设施雨水径流水文调控模拟[J].水资源保护, 2022,38(3):102-108. Zhang W, Wang H Y, Zhang Y H, et al. Hydrological regulation simulation of rainwater runoff of bioretention based on HYDRUS-1D, 2022,38(3):102-108. [33] Babaeian E, Homaee M, Vereecken H, et al. A comparative Study of multiple approaches for predicting the soil-water retention curve:Hyperspectral information vs. basic soil properties[J]. Soil Science Society of America Journal, 2015,79(4):1043. [34] 杨博,赵西宁,高晓东,等.耦合干空气机制的黄土水热运移过程模拟--以山地苹果园为例[J].土壤学报, 2021,58(2):401-411. Yang B, Zhao X N, Gao X D, et al. Simulation of water and heat process in loess by incorporating dry air-flow mechanism a case study of an apple orchard on mountain[J]. Acta Pedologica Sinica, 2022,38(2):76-86. [35] HJ964-2018环境影响评价技术导则土壤环境(试行)[S]. HJ964-2018 Technical guidelines for environmental impact assessment soil environment[S]. [36] 康得军,张芳,吕茳芏,等.浸泡淋滤作用下煤矸石重金属元素的释放规律及特征研究[J].环境科学研究, 2023,36(1):54-62. Kang D J, Zhang F, Lv J T, et al. Research on release law and characteristics of heavy metals in coal gangue under soaking and leaching[J]. Research of Environmental Sciences, 2023,36(1):54-62. [37] GB36600-2018土壤环境质量标准建设用地土壤污染风险管控标准(试行)[S]. GB36600-2018 Soil environmental quality Risk control standard for soil contamination of development land[S]. [38] 彭丽成,黄占斌,石宇,等.不同环境材料对Pb,Cd污染土壤的淋溶效应[J].环境科学学报, 2011,31(5):1033-1038. Peng L C, Huan Z B, Shi Y, et al. Leaching effects of different environmental materials on soils polluted by Pb and Cd[J]. Acta Scientiae Circumstantiae, 2011,31(5):1033-1038. [39] 周鹏飞,张世文,罗明,等.矿业废弃地不同生态修复模式下植物多样性及重金属富集迁移特征[J].环境科学, 2022,43(2):985-994. Zhou P F, Zhang S W, Lu M, et al. Characteristics of plant diversity and heavy metal enrichment and migration under different ecological restoration modes in abandoned mining areas[J]. Environmental Science, 2022,43(2):985-994. [40] 王晓彤,胡振琪,梁宇生.基于Hydrus-1D的黄河泥沙充填复垦土壤夹层结构优化[J].农业工程学报, 2022,38(2):76-86. Wang X T, Hu Z Q, Liang Y S et al. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus-1D model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022,38(2):76-86. [41] 郭爱科.煤矸石混合土壤水分入渗与蒸发特性试验及模拟研究[D].邯郸:河北工程大学, 2022. Guo A K. Experimental and simulation study on water infiltration and evaporation characteristics of coal gangue mixed soil[D]. Handan:Hebei university of engineering, 2022. [42] 冯树娜.冻融与淋洗协同驱动土壤中汞的迁移过程及HYDRUS数值模拟研究[D].杨凌:西北农林科技大学, 2023. Feng S N. Experimental and numerical simulation of transfer process of mercury in soil driven by freezing-thawing and soil leaching technology[D]. Yangling:Northwest A& F University, 2023. [43] 王念秦,贺磊,汤廉超,等.陕北矿区煤矸石淋滤试验研究[J].煤田地质与勘探, 2017,45(1):110-113. Wang N Q, He L, Tang L C, et al. Coal gangue leaching experiment of mining area in Northern Shaanxi[J]. Coal Geology& Exploration, 2017,45(1):110-113. [44] 蔡云,朱琦,胡振琪.某硫酸盐还原菌株的分离及其在煤矸石山酸化污染修复中的应用[J].金属矿山, 2023,(7):254-260. Cai Y, Zhu Q, Hu Z Q, et al. Isolation of an SRB Strain and It's Application in Remediation of Coal Gangue Acidification Pollution[J]. Metal Mine, 2023,(7):254-260. [45] 唐莹,武相林,孙敏,等.北京市门头沟风化煤矸石中汞的赋存形态与溶出特征分析[J].环境化学, 2022,41(3):962-976. Tang Y, Wu X L, Sun M, et al. Analysis on the occurrence and dissolution characteristics of mercury in weathered coal gangue in Mentougou, Beijing[J]. Environmental Chemistry, 2022,41(3):962-976. [46] 赵丽,张攀群,刘婷,等.煤矸石中无机和有机氮的溶出规律研究[J].干旱区资源与环境, 2020,34(12):130-135. Zhao L, Zhang P Q, Liu T, et al. Study on the dissolution law of inorganic and organic nitrogen in coal gangue[J]. Journal of Arid Land Resources and Environment, 2020,34(12):130-135. [47] 方堃,陈效民,沃飞,等.典型水稻土中硝态氮垂直穿透状况及模拟[J].安全与环境学报, 2007,(5):16-20. Fang K, Chen X M, Wo F, et al. Study on the situation of the nitrate-N's vertical breaking-through of the soil in the typical rice fields and simulation by Hydrus-1D model[J]. Journal of Safety and Environment, 2007,(5):16-20. [48] GB15618-2018土壤环境质量农用地土壤污染风险管控标准(试行)[S]. GB15618-2018 Soil environmental quality Risk control standard for soil contamination of agricultural land[S]. [49] Le C S, Moura P, Barraud S, et al. Temporal evolution and spatial distribution of heavy metals in a stormwater infiltration basin-estimation of the mass of trapped pollutants[J]. Water science and technology:a journal of the International Association on Water Pollution Research, 2007,56(12):93-100. [50] Honar M R, Shamsnia S A, Gholami A. Evaluation of water flow and infiltration using HYDRUS model in sprinkler irrigation system[C]. Proceedings of International Conference on Environmental Engineering and Applications (ICEEA 2011). 2011. [51] Liu K,Li C, Tang S, et al. Heavy metal concentration, potential ecological risk assessment and enzyme activity in soils affected by a lead-zinc tailing spill in Guangxi,China[J]. Chemosphere, 2020,251(C):12641. |
|
|
|