Ionic solidification and size effect of hemihydrate phosphogypsum backfill
LAN Wen-tao1,2, WU Ai-xiang1,2, WANG Yi-ming1,2, WANG Jia-cai3, LI Jian-qiu3
1. School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2. State Key Laboratory of the Ministry of Education of China for High-efficient Mining and Safety of Metal Mines, Beijing 100083, China;
3. Guizhou Chuanheng Chemical Corporation, Fuquan 550500, China
In view of the environmental pollution caused by the accumulation of phosphogypsum, a solution was proposed to treat the HPG as a filling material with innocuous treatment. Through osmosis test, physical property test and chemical composition analysis test of HPG, the regularity of elemental release was studied with different lime content, different size and different curing time. The results showed that adding 2% lime to HPG had the best curing effect on P, F or other potentially harmful elements in HPG, and the compressive strength of the prepared filling blocks could reach 7.4MPa in three days. At the same time, its penetration resistance increased by more than 3000times. The dissolution rate per unit area of HPG in deionized water was obtained by immersion test. When the exposed area of filling body is 4square meters, the total amount of P, F, Ca2+ and SO42- dissolved in water was 0.84, 0.32, 27.84 and 89.32g per day. It was also found that the ion dissolution of HPG specimens had a size effect. Under the same conditions of immersion time and solid-liquid ratio, increasing the size of backfill can reduce the ion dissolution rate.
兰文涛, 吴爱祥, 王贻明, 王佳才, 李剑秋. 半水磷石膏充填体离子固化与尺寸效应[J]. 中国环境科学, 2019, 39(1): 210-218.
LAN Wen-tao, WU Ai-xiang, WANG Yi-ming, WANG Jia-cai, LI Jian-qiu. Ionic solidification and size effect of hemihydrate phosphogypsum backfill. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(1): 210-218.
李国英,白闰平,米占宽,等.土体在磷石膏酸液渗透作用下的物性变化试验研究[J]. 岩土工程学报, 2015,37(3):419-425. Li Guoying, Bai Yunping, Mi Zhankuan, et al. Experimental investigation on physical properties of soil in permeation process of phosphogypsum leachate[J]. Journal of Geotechnical Engineering, 2015,37(3):419-425.
[2]
李季,吴洪生,高志球,等.磷石膏对麦田CO2排放和小麦产量的影响及其经济环境效益分析[J]. 环境科学, 2015,36(8):3099-3105. Li Ji, Wu Hongsheng, Gao Zhiqiu, et al. Impact of Phosphogypsum Wastes on the Wheat Growth and CO2 Emissions and Evanuation of Economic-environmental Benefit[J]. Environmental Science, 2015, 36(8):3099-3105.
[3]
李季,吴洪生,高志球,等.磷石膏废渣对小麦生长及麦田N2O排放影响与经济环境效益分析[J]. 环境科学与技术, 2016,39(4):174-181. Li Ji, Wu Hongsheng, Gao Zhiqiu, et al. Impact of Phosphogypsum Wastes on the Wheat Growth and N2O Emissions and Assessment of Economic-Environmental Benefit[J]. Environmental Science and Technology, 2016,39(4):174-181.
[4]
李喜林,王来贵,赵奎,等.铬渣浸溶Cr(Ⅵ)溶解释放规律研究-以锦州堆场铬渣为例[J]. 地球与环境, 2013,41(5):518-523. Li Xilin, Wang Laigui, Zhao Kui, et al. Research on Cr (VI) Releasing Mechanism by Chromium Slag Dissolution as Exemplified by the Chromium Slag of Jinzhou Yard[J]. Earth and Environment, 2013,41(5):518-523.
[5]
杨林,张冰,周杰,等.磷石膏制备α型高强石膏及其转化过程研究[J]. 建筑材料学报, 2014,17(1):147-152. Yang Lin, Zhang Bing, Zhou Jie, et al. Preparation of a-High Strength Gypsum Using Phosphogypsum and Transformation of Phosphogypsum to a-High Strength Gypsum[J]. Journal of Building Materials, 2014, 17(1):147-152.
[6]
梁斌,王超,岳海荣,等.天然钾长石-磷石膏矿化CO2联产硫酸钾过程评价[J]. 四川大学学报(工程科学版), 2014,46(3):168-174. Liang Bin, Wang Chao, Yue Hairong, et al. Evaluation for the Process of Mineralization of CO2 Using Natural K-feldspar and Phosphogypsum to Produce Sulfate Potassium[J]. Journal of Sichuan University (Engineering Science Edition), 2014,46(3):168-174.
[7]
桂跃,余志华,张庆,等.固化磷石膏-疏浚淤泥混合土的工程性质研究[J]. 四川大学学报(工程科学版), 2014,46(3):147-153. Guiyue, Yu Zhihua, Zhang Qing, et al. Study on the Engineering Properties of Stabilized Phosphogypsum-dredged Material Blend[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 46(3):147-153.
[8]
郭中宝,白永智,崔金华,等. ICP-AES法测定石膏中的多元素含量[J]. 光谱学与光谱分析, 2014,34(8):2250-2253. Guo Zhongbao, Bai Yongzhi, Cui Jinhua, et al. Determination of Multi-Element Contents in Gypsum by ICP-AES[J]. Spectroscopy and spectral analysis, 2014,34(8):2250-2253.
[9]
朱凯,解桂林,陈昭睿,等.磷石膏在一氧化碳气氛下的还原反应特性[J]. 硅酸盐学报, 2013,41(11):1540-1545. Zhu Kai, Xie Guilin, Chen Zhaorui, et al. Reaction Characteristics of Phosphogypsum Under Carbon Monoxide Atmosphere[J]. Journal of silicate, 2013,41(11):1540-1545.
[10]
候姣姣,梅甫定.磷石膏基材料的宏观性能与孔结构的关系[J]. 材料研究学报, 2013,27(6):631-640. Hou Jiaojiao, Mei Fudin. The relationship between macroscopic properties and pore structure of phosphogypsum-based materials[J]. Journal of Materials Research, 2013,27(6):631-640.
[11]
丁建文,刘铁平,曹玉鹏,等.高含水率疏浚淤泥固化土的抗压试验与强度预测[J]. 岩土工程学报, 2013,35(S2):55-60. Ding Jianwen, Liu Tieping, Cao Yupeng, et al. Compressive test and strength prediction of dredged silt solidified soil with high water content[J]. Journal of Geotechnical Engineering, 2013,35(S2):55-60.
[12]
李美,彭家惠,张建新,等.湿法磷酸萃取工艺对磷石膏晶形的影响[J]. 建筑材料学报, 2013,16(1):147-152. Li Mei, Peng Jiahui, Zhang Jianxin, et al. The effect of wet-process phosphoric acid extraction process on the crystal form of phosphogypsum[J]. Journal of Building Materials, 2013,16(1):147-152.
[13]
马保国,茹晓红,邹开波,等.常压水热Ca-Na-Cl溶液中用磷石膏制备α-半水石膏[J]. 化工学报, 2013,64(7):2701-2707. Ma Baoguo, Ru Xiaohong, Zou Kaibo, et al. Preparation of alpha-hemihydrate gypsum from phosphogypsum in atmospheric hydrothermal Ca-Na-Cl solution[J]. Journal of Chemical Engineering, 2013,64(7):2701-2707.
[14]
杨月红,舒敦涛,宁平.微波场诱导改性磷石膏吸附Cu~(2+),Zn~(2+),Pb~(2+)和Cd~(2+)的动力学与热力学研究[J]. 中南大学学报(自然科学版), 2013,44(5):2157-2164. Yang Yuehong, Shu Duntao, Ningping. Kinetic and thermodynamic studies on the adsorption of Cu~(2+), Zn~(2+), Pb~(2+) and Cd~(2+) by modified phosphogypsum induced by microwave field[J]. Journal of Central South University (Natural Science Edition), 2013, 44(5):2157-2164.
[15]
王东星,徐卫亚.大掺量粉煤灰淤泥固化土的强度与耐久性研究[J]. 岩土力学, 2012,33(12):3659-3664. Wang Dongxing, Xu Weiya. Strength and durability of stabilized soil with large amount of Fly Ash Sludge[J]. Geotechnical Mechanics, 2012,33(12):3659-3664.
[16]
GB/T 176-2017水泥化学分析方法[S]. GB/T 176-2017 Method for chemical analysis of cement[S].
[17]
T/0811-1994石灰有效氧化钙测定方法[S]. T/0811-1994 Liming materials-Guide to the determination of the lime requirement[S].
[18]
GB/T 15555.12-1995固体废物-腐蚀性测定-玻璃电极法[S]. GB/T 15555.12-1995 Solid waste-Glass electrode test-Method of corrosivity[S].
[19]
GB11893-1989水质-总磷的测定-钼酸铵分光光度法[S]. GB11893-1989 Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S].
[20]
SL237-1999土工试验规程[S]. SL237-1999 Test methods of soils[S].
[21]
GB/T50123-1999土工试验方法标准[S]. GB/T50123-1999 Standard for soil test method[S].
[22]
HJ557-2010固体废物浸出毒性浸出方法-水平振荡法[S]. HJ557-2010 Test method standard for leachingtoxicity of solid wastes——Horizontal vibration extraction procedure[S].
[23]
GB7484-1987水质-氟化物的测定-离子选择电极法[S]. GB7484-1987 Water quality-Determination of fluoride-Ion selective electrode method[S].
[24]
GB 11893-1989水质总磷的测定钼酸铵分光光度法[S]. GB 11893-1989 Water quality-Determination of total phosphorus-Ammonium molybdate spectrophotometric method[S].
[25]
GB/T6682分析实验室用水规格和实验方法[S]. GB/T6682 Water for analytical laboratory use-Specification and test methods[S].
[26]
高春梅,张中发,张硕.海州湾秋季沉积物磷的形态分布及生物有效性[J]. 中国环境科学, 2018,38(4):1499-1509. Gao Chunmei, Zhang zhongfa, Zhang shuo. Speciation and bioavailability of phosphorus in sediments (autumn) of Haizhou Bay[J]. China Environmental Science, 2018,38(4):1499-1509.
[27]
胡德秀,张艳,朱玲,等.污泥厌氧过程中磷释放与SMP特性研究[J]. 中国环境科学, 2018,38(8):2974-2980. Hu Dexiu, Zhang Yan, Zhu Ling, et al. Characteristics of phosphorus released and soluble microbial products in anaerobic conditions of sludge[J]. China Environmental Science, 2018,38(8):2974-2980.
[28]
韩微,雷志超,韩蕊敏,等.响应面法优化实际污水厂的除磷过程[J]. 中国环境科学, 2018,38(8):2968-2973. Han Wei, Lei Zhichao, Han Ruimin, et al. Phosphorus removal process optimization of wastewater treatment plant by response surface methodology[J]. China Environmental Science, 2018,38(8):2968-2973.
[29]
高春梅,张中发,张硕,等.海州湾表层沉积物磷的吸附容量及潜在释放风险[J]. 中国环境科学, 2018,38(8):3072-3078. Gao Chunmei, Zhangzhong, Zhangshuo, et al. Adsorption capacity and potential release risk of surface sediments in Haizhou Bay[J]. China Environmental Science, 2018,38(8):3072-3078.
[30]
秦樊鑫,吴迪,黄先飞,等.高氟病区茶园土壤氟形态及其分布特征[J]. 中国环境科学, 2014,34(11):2859-2865. Qin Fanxin, Wu Di, Huang Xianfei, et al. Distribution characteristics and speciation of fluorine in tea Garden soils in the high fluoride area[J]. China Environmental Science, 2014,34(11):2859-2865.
[31]
李潇,仝彤,李健,等.母乳中全氟化合物的污染水平与婴儿暴露评估[J]. 中国环境科学, 2015,35(11):3475-3480. Li Xiao, Bingtong, Li Jian, et al. Perfluorinated compounds in human milk from Beijing:levels and exposure assessment of nursing infant[J]. China Environmental Science, 2015,35(11):3475-3480.
[32]
胡国成,郑海,张丽娟,等.珠江三角洲土壤中全氟化合物污染特征研究[J]. 中国环境科学, 2013,33(S1):37-42. Hu Guocheng, Zhenghai, Zhang Lijuan, et al. Contamination characteristics of perfluorinated compounds in soil from Pearl River Delta, South China[J]. China Environmental Science, 2013,33(S1):37-42.