Soil erosion and Selenium loss in Qinjiang River Basin in Beibu Gulf coastal zone
TIAN Yi-chao1,2,3, HUANG Yuan-lin1, ZHANG Qiang1, TAO Jin1, ZHANG Ya-li1, XIE Xiao-kui1, WANG Ri-ming1
1. College of Resources and Environment, Beibu Gulf University, Qinzhou 535011, China;
2. Key Laboratory of Marine Geographic Information Resources Development and Utilization in the Beibu Gulf, Beibu Gulf University, Qinzhou 535011, China;
3. National Key Laboratory of Environmental Geochemistry, Geochemistry Institute of Chinese Academy of Science, Guiyang 550002, China
Based on the meteorological data, remote sensing data, digital elevation model, soil types and soil texture data of Qinjiang River basin in 2015, the spatial distribution of soil erosion and associated Se loss in 2015 in Qinjiang River Basin in Beibu Gulf coastal zone, was quantitatively analyzed by using the modified universal soil loss equation (RUSLE) and GIS spatial analysis technology technique. The results indicated that the total amount of soil erosion in Beibu Gulf Qinjiang River Basin in 2015 was 381.64×104t/a, and the average modulus of soil erosion was 14.79t/(hm2·a). The soil erosion modulus of the Qinjiang River Basin was less than that of the 2010, but far greater than that of the Ministry of water resources in the red soil hilly area of the South China. The soil erosion intensity was mainly slight erosion, which decreased successively from upstream to downstream in the basin. The elevation zone between 0~240m and the slope zone belts of greater than 15degrees were the key areas for soil erosion prevention in the future. The highest modulus of soil erosion in mountainous area was 23.49t/(hm2·a), which was about 1.59times higher than the average modulus of soil erosion in watershed, followed by hilly area and the smallest in alluvial plain. The content of selenium in the soil was between 0.38~0.72mg/kg, with the average value of 0.49mg/kg, which was 1.69times higher than the background value of selenium in Chinese. Selenium content in different land use types decreased with the increase of soil profile depth. The order of Se content in different land use types was forest land > garden land > grassland > paddy field > dry land, and the order of Se content in different soil types was:new accumulated soil > limestone soil > gleying paddy soil > flooded paddy soil > dry land. Lateritic red soil > paddy soil soil > lateritic soil > coastal sandy soil > purple soil > salty acid paddy soil. The total loss of selenium Qinjiang River Basin was 8987.05kg/a. The average loss modulus was 0.0344kg/(hm2·a), and the loss of selenium in the middle reaches of the river basin was the largest. The results can provide scientific basis for the development of selenium-rich agricultural products, the development of selenium-rich agriculture and the promotion of land use value in Qinjiang River Basin.
Qiao Y, Yun Q. Fast soil erosion investigation and dynamic analysis in the loess plateau of China by using information composite technique[J]. Advances in Space Research, 2002,29(1):85-88.
[2]
李文超,翟丽梅,刘宏斌,等.流域磷素面源污染产生与输移空间分异特征[J]. 中国环境科学, 2017,37(2):711-719. Li W C, Zhai L M, Liu H B, et al. Contrasting spatial distribution of the emission and export of phosphorus loss from a typical watershed in Yunnan Plateau Lakes Area[J]. China Environmental Science, 2017, 37(2):711-719.
[3]
Chowdary V M, Chakraborthy D, Jeyaram A, et al. Multi-criteria decision making approach for watershed prioritization using analytic hierarchy process technique and GIS[J]. Water Resources Management, 2013,27(10):3555-3571.
[4]
Sobral A C, Peixoto A S P, Nascimento V F, et al. Natural and anthropogenic influence on soil erosion in a rural watershed in the Brazilian southeastern region[J]. Regional Environmental Change, 2015,15(4):709-720.
[5]
吴楠,苏德毕力格,高吉喜,等.基于格局和过程的流域生态系统减轻入库泥沙服务及价值——以雅砻江二滩水库为例[J]. 中国环境科学, 2011,31(10):1751-1760. Wu N, Sude B, Gao J X, et al. Evaluation of a watershed ecosystem service for avoiding reservoir sedimentation and its economic value based on pattern and process-a case study from Ertan reservoir in Yalong river[J]. China Environmental Science, 2011,31(10):1751-1760.
[6]
Duvert C, Gratiot N, Evrard O, et al. Drivers of erosion and suspended sediment transport in three headwater catchments of the Mexican Central Highlands[J]. Geomorphology, 2011,123(3):243-256.
[7]
孟繁斌,季洪涛,张安,等.大伙房水库上游土壤侵蚀对水质的影响[J]. 人民黄河, 2016,38(2):84-86. Meng F B, Ji H T, Zhang A, et al. Influence on Water Quality of the Soil Erosion in the Upstream of Dahuofang Reservoir[J]. Yellow River, 2016,38(2):84-86.
[8]
Duvert C, Gratiot N, Evrard O, et al. Drivers of erosion and suspended sediment transport in three headwater catchments of the Mexican Central Highlands[J]. Geomorphology, 2011,123(3):243-256.
[9]
Ni J R, Li X X, Borthwick A G L. Soil erosion assessment based on minimum polygons in the Yellow River basin, China[J]. Geomorphology, 2008,93(3/4):233-252.
[10]
Wischmeier W H, Smith D D. Predicting rainfall erosion losses-a guide to conservation planning[J]. Agric Handbook, 1978,537.
[11]
Xu Y Q, Shao X M, Kong X B, et al. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed, Guizhou Province, China[J]. Environmental Monitoring & Assessment, 2008, 141(1-3):275-286.
[12]
武国胜,林惠花,曾宏达.用RS和GIS技术评价福建省长汀县土壤保持功能对生态系统变化的响应[J]. 生态学报, 2017,37(1):321-330. WU G S, Lin H H, Zeng H D. Responses of soil conservation function to ecosystem changes:an assessment based on RS and GIS in Changting County, Fujian Province[J]. Acta Ecologica Sinica, 2017, 37(1):321-330.
[13]
江忠善,郑粉莉,武敏.中国坡面水蚀预报模型研究[J]. 泥沙研究, 2005,(4):1-6. Jiang Z S, Zheng F L, Min W U. Prediction model of water erosion on hillslopes[J]. Journal of Sediment Research, 2005,18(1):66-69.
[14]
Liu B, Zhang K, Xie Y. An Empirical Soil Loss Equation[C]//Proceedings12th International Soil Conservation Organization Conference. 2002.
[15]
刘宝元,史培军.WEPP水蚀预报流域模型[J]. 水土保持通报, 1998,18(5):6-12. Liu B, Shi P J. Water Erosion Prodiction Project(WEPP) Model for Watershed Scale[J]. Bulletin of Soil & Water Conservation, 1998, 18(5):6-11.
[16]
Morgan R P C, Quinton J N, Smith R E, et al. The European Soil Erosion Model (EUROSEM):a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes & Landforms, 1998,23(6):527-544.
[17]
De Roo A P J,Wesseling C G and Ritsema C J. LISEM:A single-event physically based hydrological and soil erosion model for drainage basins[J]. Hydrological Processes, 1996,10(8):1107-1118.
[18]
De Jong S M, Paracchini M L, Bertolo F, et al. Regional assessment of soil erosion using the distributed model SEMMED and remotely sensed data[J]. Catena, 1999,37:291-308.
[19]
齐述华,蒋梅鑫,于秀波.基于遥感和ULSE模型评价1995~2005年江西土壤侵蚀[J]. 中国环境科学, 2011,31(7):1197-1203. Qi S H, Jiang M X, Yu X B, et al. Evaluating soil erosion in Jiangxi Province with USLE model and remote sensing technology during 1995~2005[J]. China Environmental Science, 2011,31(7):1197-1203.
[20]
Ben I A, Troudi A, Garoui E, et al. Protective effects of selenium on methimazole nephrotoxicity in adult rats and their offspring[J]. Experimental & Toxicologic Pathology Official Journal of the Gesellschaft Für Toxikologische Pathologie, 2011,63(6):553-561.
[21]
王世纪,吴小勇,刘军保.浙北地区土壤硒元素特征及其生态环境效应评价[J]. 中国地质, 2004,(z1):118-125. Wang S J, Wu X Y, Liu J B. Characteristics of elemental selenium in soils and evaluation of eco-environmental effects in northern Zhejiang[J]. Chinese Geology, 2004(z1):118-125.
[22]
谭见安.中华人民共和国地方病与环境图集[M]. 北京:科学出版社, 1990. Tan J A. Atlas of Endemic Diseases and Environment of the People's Republic of China[M]. Beijing:Science China Press, 1990.
[23]
孙朝,侯青叶,杨忠芳,等.典型土壤环境中硒的迁移转化影响因素研究——以四川省成都经济区为例[J]. 中国地质, 2010,37(6):1760-1768. Sun Z, Hou Q Y, Yang Z F, et al. Factors controlling the transport and transformation of selenium in typical soil environments:a case study of the Chengdu economic zone in Sichuan Province[J]. Geology in China, 2010,37(6):1760-1768.
[24]
王松山,梁东丽,魏威,等.基于路径分析的土壤性质与硒形态的关系[J]. 土壤学报, 2011,48(4):823-830. Wang S S, Liang D L, Wei W, et al. Relationship between soil physico-chemical properties and selenium species based on path analysis[J]. Acta Pedologica Sinica, 2011,48(4):823-830.
[25]
李杰,杨志强,刘枝刚,等.南宁市土壤硒分布特征及其影响因素探讨[J]. 土壤学报, 2012,49(5):1012-1020. LI J, Yang Z Q, Liu Z G, et al. Distribution of selenium in soils of nanning city and its influencing factors[J]. Acta Pedologica Sinica, 2012,49(5):1012-1020.
[26]
Wischmeier W H, Smith D D. Predicting Rainfall-Erosio Losses from Cropland East of the Rocky Mountains[M]. USDA Agricultural Handbook, Washington, DC, USA. 1965.
[27]
Williams J R. The EPIC crop growth model[J]. Transactions of the Asae, 1989,32(2):497-511.
[28]
冯强,赵文武.USLE/RUSLE中植被覆盖与管理因子研究进展[J]. 生态学报, 2014,34(16):4461-4472. Feng Q, Zhao W W. The Study on Cover-Management Factor in USLE and RUSLE:A Review[J]. Acta Ecologica Sinica, 2014,34(16):4461-4472.
[29]
陈龙,谢高地,张昌顺,等.澜沧江流域土壤侵蚀的空间分布特征[J]. 资源科学, 2012,34(7):1240-1247. Chen L, Xie G D, Zhang C S, et al. Spatial distribution characteristics of soil erosion in Lancang River basin[J]. Resources Science, 2012, 34(7):1240-1247.
[30]
李杰,杨志强,刘枝刚,等.南宁市土壤硒分布特征及其影响因素探讨[J]. 土壤学报, 2012,49(5):1012-1020. Li J, Yang Z Q, Liu Z G, et al. Distribution of selenium in soils of Nanning city and its influencing factors[J]. Acta Pedologica Sinica, 2012,49(5):1012-1020.
[31]
Dai Z, Feng X, Zhang C, et al. Assessment of mercury erosion by surface water in Wanshan mercury mining area[J]. Environmental Research, 2013,125(SI):2-11.
[32]
朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J]. 环境科学学报, 2003,23(2):205-210. Zhu Y G. Micro-interfacial processes in soil-plant systems and their environmental impacts[J]. Acta Scientiae Circumstantiae, 2003,23(2):205-210.
[33]
Kocman D, Horvat M. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment[J]. Atmospheric Chemistry and Physics, 2010,9(6):1417-1426.
[34]
Gavrilovic Z. 1988. The use of an empirical method (erosion potential method for calculating sediment production and transportation in unstudied or torrential streams). Walling-ford, England:International Conference on River Regime.
[35]
王世纪,吴小勇,刘军保.浙北地区土壤硒元素特征及其生态环境效应评价[J]. 中国地质, 2004,(s1):118-125. Wang S J, Wu X Y, Liu J B. Characteristics of elemental selenium in soils and evaluation of eco-environmental effects in northern Zhejiang[J]. Geology in china, 2012,49(5):1012-1020.
[36]
何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M]. 北京:中国环境科学出版社, 1998. He Z L, Zhou Q X, Xie Z M. Soil-Chemical balances of pollution and beneficial elements[M]. Beijing:China environmental science press, 1998.
[37]
高峰,华璀,卢远,等.基于GIS和USLE的钦江流域土壤侵蚀评估[J]. 水土保持研究, 2014,21(1):18-22. Gao F, Hua C, Lu Y, et al. Assessment of Soil Erosion in Qinjiang Watershed Based on GIS and USLE[J]. Research of Soil & Water Conservation, 2014,21(1):18-22.
[38]
候刘起.南流江流域土壤侵蚀空间分布特征研究[D]. 广西师范学院, 2013. Hou L Q. Study on the spatial distribution characteristics of soil erosion in Nanliu River Basin[D]. Guangxi Teachers Education University, 2013.
[39]
杨志强,李杰,郑国东,等.广西北部湾沿海经济区富硒土壤地球化学特征[J]. 物探与化探, 2014,38(6):1260-1264. Yang Z Q, Li J, Zhen G D, et al. Geochemical characteristics of selenium-rich soil in Beibu Gulf coastal economic zone of Guangxi[J]. Geophysical and Geochemical Exploration, 2014,38(6):1260-1264.
[40]
严明书,龚媛媛,杨乐超,等.重庆土壤硒的地球化学特征及经济意义[J]. 物探与化探, 2014,38(2):325-330. Yan M S, Gong Y Y, Yang L C, et al. Eochemical characteristics and economic significance of the Se~rich soil in Chongqing[J]. Geophysical and Geochemical Exploration, 2014,38(2):325-330.
[41]
周越,吴文良,孟凡乔,等.土壤中硒含量、形态及有效性分析[J]. 农业资源与环境学报, 2014,(6):527-532. Zhou Y, Wu W L, Meng F Q, et al. Review on the content, specification of selenium and its availability in soils[J]. Journal of Agricultural Resources & Environment, 2014(6):527-532.
[42]
Zhou W, Cadenasso M L. Effects of patch characteristics and within patch heterogeneity on the accuracy of urban land cover estimates from visual interpretation[J]. Landscape Ecology, 2012,27(9):1291-1305.
[43]
王中根,刘昌明,黄友波. SWAT模型的原理、结构及应用研究[J]. 地理科学进展, 2003,22(1):79-86. Wang Z G, Liu C M, Huang Y B, et al. Xiaochun T, Peng P. The Theory of SWAT Model and its Application in Heihe Basin[J]. Progress in Geography [43]. 2003,22(1):79-86.