Research progress on biofilm thickness control in membrane aerated biofilm
ZHAI Xin-yu1, WEI Chun-hai1,2, GUO Qi-qi1, RONG Hong-wei1,2, LUO Min3, BAO Jin-feng4, QIU Yong5, HUANG Xia5
1. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China; 2. Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China; 3. Veolia Water Technologies and Solutions (Shanghai) Co. Ltd., Shanghai 201210, China; 4. Zhejiang Kai Chuang Environment Technology Co. Ltd., Hangzhou 311121, China; 5. Enivronmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084, China
Abstract:Biofilm thickness control is crucial to the successful operation and management of membrane aerated biofilm reactor (MABR) process. There is the optimal biofilm thickness to achieve the best simultaneous removal of carbon, nitrogen and phosphorus. The research and development of MABR biofilm thickness control technology (including periodic scouring, continuous hydraulic shear, eukaryotic predation, and quorum quenching) in the past 20 years are reviewed in this article. Future research and development directions on MABR biofilm thickness control are explored to provide references for the high-quality development of MABR process towards the goals of improving water quality, saving energy and reducing carbon emission.
[1] Martin K J, Nerenberg R. The membrane biofilm reactor (MBfR) for water and wastewater treatment: Principles, applications, and recent developments [J]. Bioresource Technology, 2012,122:83-94. [2] Perez-Calleja P, Aybar M, Picioreanu C, et al. Periodic venting of MABR lumen allows high removal rates and high gas-transfer efficiencies [J]. Water Research, 2017,121:349-360. [3] 包进锋,朱品尚,朱圆圆,等.膜曝气生物膜反应器膜传氧速率的影响因素研究[J]. 膜科学与技术, 2023,43(2):123-127,149. Bao J F, Zhu P S, Zhu Y Y, et al. Study on the influencing factors of oxygen transfer rate of the membrane in membrane aerated biofilm reactor [J]. Membrane Science and Technology, 2023,43(2):123- 127,149. [4] 张超男,潘杨,刘佳音.膜曝气生物反应器综述[J]. 工业水处理, 2021,41(9):43-49,151. Zhang C N, Pan Y, Liu J Y. Review of membrane aerated bioreactor [J]. Industrial Water Treatment, 2021,41(9):43-49,151. [5] Sun L Q, Wang Z Y, Wei X, et al. Enhanced biological nitrogen and phosphorus removal using sequencing batch membrane-aerated biofilm reactor [J]. Chemical Engineering Science, 2015,135:559-565. [6] Li M, Cao X W, Wu Z Q, et al. Insights on nitrogen and phosphorus removal mechanism in a single-stage membrane aeration biofilm reactor (MABR) dominated by denitrifying phosphorus removal coupled with anaerobic/aerobic denitrification [J]. Journal of Water Process Engineering, 2023,52:103583. [7] 姜宇朵.基于CFD的膜曝气生物膜厚度控制及碳氮磷同步去除特性[D]. 广州:广州大学, 2023. Jiang Y D. Control of membrane aerated biofilm thickness based on CFD and synchronous removal of carbon, nitrogen and phosphorus [D]. Guangzhou: Guangzhou University, 2023. [8] Mehrabi S, Houweling D, Dagnew M. Establishing mainstream nitrite shunt process in membrane aerated biofilm reactors: Impact of organic carbon and biofilm scouring intensity [J]. Journal of Water Process Engineering, 2020,37:101460. [9] Sunner N, Long Z B, Houweling D, et al. MABR as a low-energy compact solution for nutrient removal upgrades - results from a demonstration in the UK [C]//WEFTEC. Proceedings of the Water Environment Federation. Birmingham: Water Environment Federation, 2019. [10] Peeters J, Adams N, Long Z B, et al. Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD [J]. Water Practice & Technology, 2017,12:927-936. [11] Li X L, Bao D G, Zhang Y Z, et al. Development and application of membrane aerated biofilm reactor (MABR)-a review [J]. Water, 2023,15(3):436-458. [12] Rong H W, Jiang Y D, Luo Z Q, et al. Low strength and COD/N wastewater treatment via controlled nitrification by a membrane aerated biofilm, partial denitrification by activated sludge, and anaerobic ammonia oxidation by granular sludge [J]. Environmental Science: Water Research & Technology, 2023,9(3):910-921. [13] Zhang L Q, Jiang X, Rong H W, et al. Exploring the carbon and nitrogen removal capacity of a membrane aerated biofilm reactor for low-strength municipal wastewater treatment [J]. Environmental Science: Water Research & Technology, 2022,8(2):280-289. [14] 宋舒兴,隋倩雯,高超龙,等.膜曝气生物膜反应器耦合厌氧氨氧化工艺处理低C/N比生活污水[J]. 环境科学学报, 2023,43(4):208-216. Song S X, Sui Q W, Gao C L, et al. Membrane aerated biofilm reactor coupled with anaerobic ammonia oxidation process treating low C/N ratio mainstream sewage [J]. Acta Scientiae Circumstantiae, 2023, 43(4):208-216. [15] 张燕伟,程方,李奕辉,等.低碳氮比下MABR同步硝化反硝化过程的构建[J]. 工业水处理, 2020,40(5):70-76. Zhang Y W, Cheng F, Li Y H, et al. Construction of simultaneous nitrification and denitrification process in membrane-aerated biofilm reactor under low C/N ratio [J]. Industrial Water Treatment, 2020, 40(5):70-76. [16] Schaffer R B, Ludzack F J, Ettinger M B. Sewage treatment by oxygenation through permeable plastic films [J]. Water Pollution Control Federation, 1960,32(9):939-941. [17] Yeh S-J, Jenkins C R. Pure oxygen fixed film reactor [J]. Journal of the Environmental Engineering Division, 1978,104(4):611-623. [18] Onishi H, Numazawa R, Takeda H. Process and apparatus for waste water treatment: United States, US4181604[P]. 1980-01-01. [19] Côté P, Bersillon J-L, Huyard A. Bubble-free aeration using membranes: Mass transfer analysis [J]. Journal of Membrane Science, 1989,47(1):91-106. [20] Suzuki Y, Miyahara S, Takeishi K. Oxygen supply method using gas-permeable film for wastewater treatment [J]. Water Science and Technology, 1993,28(7):243-250. [21] Yamagiwa K, Ohkawa A, Hirasa O. Simultaneous organic carbon removal and nitrification by biofilm formed on oxygen enrichment membrane [J]. Journal of Chemical Engineering of Japan, 1994,27: 638-643. [22] Terada A, Hibiya K, Nagai J, et al. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment [J]. Journal of Bioscience and Bioengineering, 2003,95(2):170-178. [23] 汪舒怡,汪诚文,黄霞.用于废水处理的膜曝气生物反应器[J]. 环境污染治理技术与设备, 2006,7(6):131-137. Wang S Y, Wang C W, Huang X. Membrane aerated bioreactor for wastewater treatment [J]. Techniques and Equipment for Environmental Pollution Control, 2006,7(6):131-137. [24] 刘强,杨凤林,张兴文,等.碳管膜曝气膜生物反应器处理高浓度氨氮污水的研究[J]. 水处理技术, 2007,33(1):63-66. Liu Q, Yang F L, Zhang X W, et al. Treatment of high concentration ammoniacal sewage by carbon tube membrane aeration biological reactor (MABR) [J]. Technology of Water Treatment, 2007,33(1): 63-66. [25] 李保安,闫庆元,于文志,等.无泡曝气膜生物反应器去除生活污水有机物的研究[J]. 膜科学与技术, 2009,29(6):56-60. Li B A, Yan Q Y, Yu W Z, et al. Study on MABR in domestic wastewater treatment [J]. Membrane Science and Technology, 2009,29(6):56-60. [26] Quan X, Huang K, Li M, et al. Nitrogen removal performance of municipal reverse osmosis concentrate with low C/N ratio by membrane-aerated biofilm reactor [J]. Frontiers of Environmental Science & Engineering, 2018,12(6):5-15. [27] 丁国良,程棋波,赵经纬,等.膜曝气生物膜反应器处理模拟生活污水研究[J]. 膜科学与技术, 2020,40(5):95-100. Ding G L, Cheng Q B, Zhao J W, et al. Study on the treatment of synthetic domestic sewage by membrane aeration bioreactor [J]. Membrane Science and Technology, 2020,40(5):95-100. [28] Wang Q, Shi P X, Sun Z Y, et al. Advanced treatment of municipal reverse osmosis concentrate by a hybrid ozone-membrane aerated biofilm reactor system [J]. Journal of Water Process Engineering, 2023,53:103923. [29] Lan M C, Li M, Liu J, et al. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system [J]. Bioresource Technology, 2018,270:120-128. [30] Tian H, Hu Y, Xu X, et al. Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism [J]. Bioresource Technology, 2019,289: 121649. [31] 孙浩翔,刘德钊,蓝丽华,等.探究C:N对MABR处理水产养殖废水水质影响[J]. 环境科学与技术, 2019,42(2):163-169. Sun H X, Liu D Z, Lan L H, et al. Investigation of the effect of C: N on the water quality of aquaculture wastewater treated by MABR [J]. Environmental Science & Technology, 2019,42(2):163-169. [32] 樊金鹏,田海龙,李保安.MABR及其在工业废水处理方面的应用[J]. 化学工业与工程, 2019,36(1):59-63. Fan J P, Tian H L, Li B A. MABR and its application in industrial wastewater treatment [J]. Chemical Industry and Engineering, 2019, 36(1):59-63. [33] 李浩,李鹏,李波,等. MABR用于城市景观河道水体修复的研究[J]. 膜科学与技术, 2016,36(6):101-107,118. Li H, Li P, Li B, et al. Study on MABR application in city river bioremediation [J]. Membrane Science and Technology, 2016,36(6): 101-107,118. [34] Li Y, Zhang K S. Pilot scale treatment of polluted surface waters using membrane-aerated biofilm reactor (MABR) [J]. Biotechnology & Biotechnological Equipment, 2018,32(2):376-386. [35] 潘超群,胡齐福,牛会星,等.曝气生物膜反应器处理受污染河道水体实验研究[J]. 水处理技术, 2020,46(10):124-127. Pan C Q, Hu Q F, Niu H X, et al. Experimental study on the treatment of polluted river by MABR [J]. Technology of Water Treatment, 2020,46(10):124-127. [36] Tian H L, Xu X J, Qu J H, et al. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes [J]. Journal of Hazardous Materials, 2020,392:122463. [37] 龙泽波,罗敏,马文超,等.膜传氧生物膜反应器在污水厂升级改造中的应用[J]. 中国给水排水, 2020,36(17):1-5. Long Z B, Luo M, Ma W C, et al. Application of membrane aerated biofilm reactor in upgrading of wastewater treatment plant [J]. China Water & Wastewater, 2020,36(17):1-5. [38] Lu D W, Bai H, Kong F G, et al. Recent advances in membrane aerated biofilm reactors [J]. Critical Reviews in Environmental Science and Technology, 2021,51(7):649-703. [39] 孙治冶,李保安,李玫,等.基于MABR的市政污水处理强化脱氮中试研究[J]. 化学工业与工程, 2020,37(6):61-71. Sun Z Y, Li B A, Li M, et al. Pilot study on enhanced nitrogen removal of municipal wastewater treatment based on MABR [J]. Chemical Industry and Engineering, 2020,37(6):61-71. [40] Cote P, Peeters J, Adams N, et al. A new membrane-aerated biofilm reactor for low energy wastewater treatment: Pilot results [C]//WEFTEC. Proceedings of the Water Environment Federation [C]. Water Environment Federation, 2015:4226-4239. [41] 陈晶,王冠平,石伟,等.单级MABR纯生物膜法处理市政污水的应用研究[J]. 中国给水排水, 2022,38(11):74-78. Chen J, Wang G P, Shi W, et al. Application of single stage MABR pure biofilm for the treatment of municipal wastewater [J]. China Water & Wastewater, 2022,38(11):74-78. [42] 李玫,李保安,兰美超,等.新型MABR生物脱氮过程研究进展[J]. 膜科学与技术, 2020,40(1):260-265. Li M, Li B A, Lan M C, et al. Research progress of biological nitrogen removal in MABR [J]. Membrane Science and Technology, 2020,40(1):260-265. [43] Karna D, Visvanathan C. From conventional activated sludge process to membrane-aerated biofilm reactors: Scope, applications, and challenges [M]//Bui X-T, Chiemchaisri C, Fujioka T, et al. Water and Wastewater Treatment Technologies. Singapore: Springer, 2018: 237-264. [44] Lewandowski Z, Boltz J. Biofilms in water and wastewater treatment [M]//Wilderer P. Treatise on Water Science. Elsevier, 2011:529-570. [45] Bryers J D. Modeling of biofilm accumulation [M]//Bazin M J, Prosser J I. Physiological Models in Microbiology. Boca Raton: CRC Press, 2018:109-144. [46] Corsino S F, Torregrossa M. Achieving complete nitrification below the washout SRT with hybrid membrane aerated biofilm reactor (MABR) treating municipal wastewater [J]. Journal of Environmental Chemical Engineering, 2022,10:106983. [47] 李保安,田海龙,李浩.膜曝气生物膜反应器微生物膜结构研究进展[J]. 膜科学与技术, 2013,33(6):1-5,12. Li B A, Tian H L, Li H. The configuration of reverse electrodialysis stacks utilizing ammonium bicarbonate solutions [J]. Membrane Science and Technology, 2013,33(6):1-5,12. [48] Nerenberg R. The membrane-biofilm reactor (MBfR) as a counter- diffusional biofilm process [J]. Current Opinion in Biotechnology, 2016,38:131-136. [49] Syron E, Casey E. Membrane-aerated biofilms for high rate biotreatment: Performance appraisal, engineering principles, scale-up, and development requirements [J]. Environmental Science & Technology, 2008,42(6):1833-1844. [50] 周政,李怀波,王燕,等.低碳氮比进水AAO污水处理厂低碳运行[J]. 中国环境科学, 2022,42(11):5088-5099. Zhou Z, Li H B, Wang Y, et al. Research on low-carbon operation mode in AAO-based wastewater treatment plants with low C/N influent [J]. China Environmental Science, 2022,42(11):5088-5099. [51] Matsumoto S, Terada A, Tsuneda S. Modeling of membrane-aerated biofilm: Effects of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification [J]. Biochemical Engineering Journal, 2007,37(1):98-107. [52] 魏昕.新型MABR除磷脱氮技术的研究与应用[D]. 天津:天津大学, 2012. Wei X. Study and application of nitrogen and phosphorus removal using novel MABR technology [D]. Tianjin: Tianjin University, 2012. [53] Ni B-J, Smets B F, Yuan Z G, et al. Model-based evaluation of the role of Anammox on nitric oxide and nitrous oxide productions in membrane aerated biofilm reactor [J]. Journal of Membrane Science, 2013,446:332-340. [54] 康晓峰,王黎声,刘春,等.膜曝气生物膜反应器生物脱氮研究进展[J]. 环境工程, 2021,39(7):38-45. Kang X F, Wang L S, Liu C, et al. Research progress of nitrogen removal in membrane aerated biofilm reactor [J]. Environmental Engineering, 2021,39(7):38-45. [55] Semmens M J, Dahm K, Shanahan J, et al. COD and nitrogen removal by biofilms growing on gas permeable membranes [J]. Water Research, 2003,37(18):4343-4350. [56] Sanchez-Huerta C, Medina J S, Wang C Z, et al. Understanding the role of sorption and biodegradation in the removal of organic micropollutants by membrane aerated biofilm reactor (MABR) with different biofilm thickness [J]. Water Research, 2023,236:119935. [57] 王荣昌,肖帆,赵建夫.生物膜厚度对膜曝气生物膜反应器硝化性能的影响[J]. 高校化学工程学报, 2015,29(1):151-158. Wang R C, Xiao F, Zhao J F. Effects of biofilm thickness on nitrification performance of membrane-aerated biofilm reactors [J]. Journal of Chemical Engineering of Chinese Universities, 2015,29(1): 151-158. [58] Yang C, Houweling D, He H Q, et al. Available online sensors can be used to create fingerprints for MABRs that characterize biofilm limiting conditions and serve as soft sensors [J]. Water Science and Technology, 2022,86(9):2270-2287. [59] Liu Y, Tay J-H. Detachment force and their influence on the structure and metabolic behavior of biofilms [J]. World Journal of Microbiology and Biotechnology, 2001,17:111-117. [60] Bunse P, Orschler L, Pidde A V, et al. Effects of scouring on membrane aerated biofilm reactor performance and microbial community composition [J]. Bioresource Technology, 2023,369:128441. [61] He H Q, Wagner B M, Carlson A L, et al. Recent progress using membrane aerated biofilm reactors for wastewater treatment [J]. Water Science and Technology, 2021,84(9):2131-2157. [62] Casey E, Syron E, Heffernan B. Determining biofilm thickness in a membrane supported biofilm reactor: United States, US20110266218[P]. 2011-11-03. [63] Pankhania M, Brindle K, Stephenson T. Membrane aeration bioreactors for wastewater treatment: Completely mixed and plug-flow operation [J]. Chemical Engineering Journal, 1999,73(2): 131-136. [64] Brindle K, Stephenson T, Semmens M J. Pilot-plant treatment of a high-strength brewery wastewater using a membrane-aeration bioreactor [J]. Water Environment Research, 1999,71(6):1197-1216. [65] Bunse P, Orschler L, Agrawal S, et al. Membrane aerated biofilm reactors for mainstream partial nitritation/anammox: Experiences using real municipal wastewater [J]. Water Research X, 2020,9: 100066. [66] Horn H, Reiff H, Morgenroth E. Simulation of growth and detachment in biofilm systems under defined hydrodynamic conditions [J]. Biotechnology and Bioengineering, 2003,81(5):607-617. [67] Paul E, Ochoa J C, Pechaud Y, et al. Effect of shear stress and growth conditions on detachment and physical properties of biofilms [J]. Water Research, 2012,46(17):5499-5508. [68] Celmer D, Oleszkiewicz J A, Cicek N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater [J]. Water Research, 2008,42(12):3057-3065. [69] Hwang J H, Cicek N, Oleszkiewicz J A. Achieving biofilm control in a membrane biofilm reactor removing total nitrogen [J]. Water Research, 2010,44(7):2283-2291. [70] Arefi-Oskoui S, Khataee A, Safarpour M, et al. A review on the applications of ultrasonic technology in membrane bioreactors [J]. Ultrasonics - Sonochemistry, 2019,58:104633. [71] Qasim M, Darwish N N, Mhiyo S, et al. The use of ultrasound to mitigate membrane fouling in desalination and water treatment [J]. Desalination, 2018,443:143-164. [72] Vyas N, Manmi K, Wang Q X, et al. Which parameters affect biofilm removal with acoustic cavitation? A Review [J]. Ultrasound in Medicine & Biology, 2019,45(5):1044-1055. [73] Wen X, Sui P, Huang X. Exerting ultrasound to control the membrane fouling in filtration of anaerobic activated sludge - mechanism and membrane damage [J]. Water Science and Technology, 2008,57(5): 773-779. [74] Ghasemi M, Chang S, Sivaloganathan S. Development of an integrated ultrasonic biofilm detachment model for biofilm thickness control in membrane aerated bioreactors [J]. Applied Mathematical Modelling, 2021,100:596-611. [75] Aslam M, Charfi A, Lesage G, et al. Membrane bioreactors for wastewater treatment: A review of mechanical cleaning by scouring agents to control membrane fouling [J]. Chemical Engineering Journal, 2017,307:897-913. [76] Gong Z, Liu S T, Yang F L, et al. Characterization of functional microbial community in a membrane-aerated biofilm reactor operated for completely autotrophic nitrogen removal [J]. Bioresource Technology, 2008,99(8):2749-2756. [77] Peyton B M, Characklis W G. A statistical analysis of the effect of substrate utilization and shear stress on the kinetics of biofilm detachment [J]. Biotechnology and Bioengineering, 1993,41:728-735. [78] Péchaud Y, Lavigne M P, Bessière Y, et al. Influence of shear stress, organic loading rate and hydraulic retention time on the biofilm structure and on the competition between different biological aggregate morphotypes [J]. Journal of Environmental Chemical Engineering, 2022,10:107597. [79] Sauer K, Stoodley P, Goeres D M, et al. The biofilm life cycle: Expanding the conceptual model of biofilm formation [J]. Nature Reviews Microbiology, 2022,20(10):608-620. [80] Shoji T, Itoh R, Nittami T, et al. Influence of the flow velocity on membrane-aerated biofilm reactors: Application of a rotating disk for local flow control [J]. Biochemical Engineering Journal, 2020,164: 107771. [81] Wei X, Li B A, Zhao S, et al. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR) [J]. Journal of Membrane Science, 2012,389:257-264. [82] De Beer D, Stoodley P. Microbial Biofilms [M]//Rosenberg, E. The Prokaryotes: Applied Bacteriology and Biotechnology. Berlin Heidelberg: Springer, 2013:343-372. [83] Tian H L, Zhang H M, Li P, et al. Treatment of pharmaceutical wastewater for reuse by coupled membrane-aerated biofilm reactor (MABR) system [J]. Rsc Advances, 2015,5(85):69829-69838. [84] Silva T S D, Matsumoto T, Anjos M L D, et al. Organic matter removal in a membrane-aerated biofilm reactor [J]. Journal of Environmental Engineering, 2018,144(8):04018057. [85] Castrillo M, Diez-Montero R, Esteban-Garcia A L, et al. Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration [J]. Water Research, 2019,152:1-11. [86] Buzatu P, Qiblawey H, Nasser M S, et al. Comparative power demand of mechanical and aeration imposed shear in an immersed membrane bioreactor [J]. Water Research, 2017,126:208-215. [87] 德怀特·霍韦林,格伦·戴格尔.载体生物膜强化活性污泥工艺[M]. 龙泽波,罗敏译.北京:中国建筑工业出版社, 2022. Houweling D, Daigger G T. Intensifying activated sludge using media-supported biofilms [M]. Translated by Long Z B and Luo M. Beijing: China Architecture & Building Press, 2022. [88] Plascencia-Jatomea R, Almazan-Ruiz F J, Gómez J, et al. Hydrodynamic study of a novel membrane aerated biofilm reactor (MABR): Tracer experiments and CFD simulation [J]. Chemical Engineering Science, 2015,138:324-332. [89] Martin K J, Picioreanu C, Nerenberg R. Multidimensional modeling of biofilm development and fluid dynamics in a hydrogen-based, membrane biofilm reactor (MBfR) [J]. Water Research, 2013,47(13): 4739-4751. [90] Shen L G, Wu Q H, Ye Q F, et al. Superior performance of a membrane bioreactor through innovative in-situ aeration and structural optimization using computational fluid dynamics [J]. Water Research, 2023,243:120353. [91] Malaeb L, Le-Clech P, Vrouwenvelder J S, et al. Do biological-based strategies hold promise to biofouling control in MBRs? [J]. Water Research, 2013,47(15):5447-5463. [92] Stoecker D K, Capuzzo J M. Predation on Protozoa: its importance to zooplankton [J]. Journal of Plankton Research, 1990,12:891-908. [93] Klein T, Zihlmann D, Derlon N, et al. Biological control of biofilms on membranes by metazoans [J]. Water Research, 2016,88:20-29. [94] Madoni P. Protozoa in wastewater treatment processes: A minireview [J]. Italian Journal of Zoology, 2011,78(1):3-11. [95] Kim B. Effects and control of protozoan predation on biofilm processes for wastewater treatment [D]. Notre Dame: University of Notre Dame, 2022. [96] Papadimitriou C A, Papatheodoulou A, Takavakoglou V, et al. Investigation of protozoa as indicators of wastewater treatment efficiency in constructed wetlands [J]. Desalination, 2010,250(1):378- 382. [97] Chen X Y, Li D Y, Zhou C H, et al. Predation preference for extracellular polysaccharides by paramecia and rotifers may have accelerated the decline of membrane biofilm hydraulic resistance [J]. Science of the Total Environment, 2023,889:164090. [98] Stewart P S. A model of biofilm detachment [J]. Biotechnology and Bioengineering, 1993,41(1):111-117. [99] 毛鑫,张冰,唐和礼,等.生物法减缓MBR膜污染的研究进展[J]. 中国给水排水, 2022,38(18):34-41. Mao X, Zhang B, Tang H L, et al. Research progress of biological methods to mitigate MBR membrane fouling [J]. China Water & Wastewater, 2022,38(18):34-41. [100] Derlon N, Peter-Varbanets M, Scheidegger A, et al. Predation influences the structure of biofilm developed on ultrafiltration membranes [J]. Water Research, 2012,46(10):3323-3333. [101] Fenchel T. Protozoa and oxygen [J]. Acta protozoologica, 2014, 53:3-12. [102] Aybar M, Perez-Calleja P, Li M, et al. Predation creates unique void layer in membrane-aerated biofilms [J]. Water Research, 2019,149: 232-242. [103] Kim B, Perez-Calleja P, Li M, et al. Effect of predation on the mechanical properties and detachment of MABR biofilms [J]. Water Research, 2020,186:116289. [104] Kim B, Nerenberg R. Effects of eukaryotic predation on nitrifying MABR biofilms [J]. Water Research, 2022,209:117911. [105] Parry J D. Protozoan grazing of freshwater biofilms [J]. Advances in Applied Microbiology, 2004,54:167-196. [106] Revilla M, Galán B, Viguri J R. Analysis and modelling of predation on biofilm activated sludge process: Influence on microbial distribution, sludge production and nutrient dosage [J]. Bioresource Technology, 2016,220:572-583. [107] Taşkan B, Taşkan E, Hasar H. New quorum quenching bacteria for controlling biofilm thickness in the membrane aerated biofilm reactor [J]. Process Safety and Environmental Protection, 2022,165:57-65. [108] Grandclément C, Tannières M, Moréra S, et al. Quorum quenching: Role in nature and applied developments [J]. FEMS Microbiology Reviews, 2015,40(1):86-116. [109] Oh H-S, Lee C-H. Origin and evolution of quorum quenching technology for biofouling control in MBRs for wastewater treatment [J]. Journal of Membrane Science, 2018,554:331-345. [110] Yu H R, Xu G R, Qu F S, et al. Effect of solid retention time on membrane fouling in membrane bioreactor: from the perspective of quorum sensing and quorum quenching [J]. Applied Microbiology and Biotechnology, 2016,100(18):7887-7897. [111] 程阳眷,黄丹,王玉璠,等.环境介质对微生物群体感应信号分子的影响[J]. 中国环境科学, 2023,43(4):2007-2016. Cheng Y J, Huang D, Wang Y F, et al. Influences of environmental substrates on microbial quorum-sensing signals [J]. China Environmental Science, 2023,43(4):2007-2016. [112] Huang J H, Shi Y H, Zeng G M, et al. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview [J]. Chemosphere, 2016,157:137-151. [113] Sun Z Q, Xi J Y, Yang C P, et al. Quorum sensing regulation methods and their effects on biofilm in biological waste treatment systems: A review [J]. Frontiers of Environmental Science & Engineering, 2021,16(7):87-99. [114] Hu Y Z, Hu Y S, Li Y Y, et al. Metagenomic insights into quorum sensing in membrane-aerated biofilm reactors for phenolic wastewater treatment [J]. Environmental Technology, 2020,43(9):1318-1327. [115] Choo K-H, Park P-K, Oh H-S. Quorum sensing and quorum quenching in membrane bioreactors [M]//Ng H Y, Ng T C A, Ngo H H, et al. Current Developments in Biotechnology and Bioengineering. Amsterdam Oxford Cambridge: Elsevier, 2020:245-274. [116] Ergön-Can T, Köse-Mutlu B, Koyuncu I İ, et al. Biofouling control based on bacterial quorum quenching with a new application: Rotary microbial carrier frame [J]. Journal of Membrane Science, 2017,525: 116-124. [117] Taşkan B, Hasar H, Lee C-H. Effective biofilm control in a membrane biofilm reactor using a quenching bacterium (Rhodococcus sp. BH4) [J]. Biotechnology Bioengineering, 2020,117(4):1012-1023. [118] Weerasekara N A, Choo K-H, Lee C-H. Biofouling control: Bacterial quorum quenching versus chlorination in membrane bioreactors [J]. Water Research, 2016,103:293-301.