|
|
The response of soil archaeal community structure to halophyte vegetation succession in the Yellow River Delta |
ZHANG Yue1, KONG Qiang1, GUO Du-fa1, JIN Jian-ling2, JIANG Ai-xia1, GUO Jian3 |
1. College of Geography and Enviroment, Shandong Normal University, Jinan 250014, China;
2. College of Life Sciences, Shandong University, Jinan 250100, China;
3. Food Science and Engineering, Shandong Agricuture and Engineering University, Jinan 250100, China |
|
|
Abstract This study attempted to investigate the soil archaeal community structure of bare board and other four kinds of halophyte vegetation (Saline Seepweed, Angiospermae, Imperata and A. venetum) in the Yellow River Delta by using high-throughput sequencing technology, and revealed its response to halophytic vegetation succession. The vegetation coverage would help to reduce the extent of soil salinization and increase the content of soil nutrients. The soil available phosphorus had a rising trend with the salt vegetation forward succession in bare board- heavy salt soil(Saline Seepweed, Angiospermae)- light salt soil(Imperata, A. venetum). The soil archaeal community structure of the 5soil differed significantly, bare board with no vegetation coverage had the highest soil archaeal community diversity and richness, and Euryarchaeota was the advantage microflora. Soil archaeal community structure wasn't consistent strictly with halophytic vegetation succession. The community structure of soil archaea didn't have obvious similarity when the halophytic vegetation succession at the same stage. Most community structure of soil archaea had differences at different successional stages, while the differences were not all greater when at the different stage. With the salt vegetation forward succession, the soil temperature, electrical conductivity (salinity) and total nitrogen played catalytic roles to soil archaeal community structure diversity, while the soil available nitrogen and organic matter had inhibitory effects.
|
Received: 26 December 2015
|
|
|
|
|
[1] |
Woese C R, Kandler O, Wheelis M L. Toward anatural system of organisms: Proposal for the domains archaea, bacteria and eucarya [J]. Proc Natl Acad Sci USA, 1990,87:4576-4579.
|
[2] |
李曙光,皮昀丹.古菌研究及其展望 [J]. 中国科学技术大学学报, 2007,37(8):830-838.
|
[3] |
Damon C, Lehembre F, Oger-Desfeux C, et al. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils [J]. PloS one, 2012,7(1):e28967.
|
[4] |
Moran M A. Metatranscriptomics: eavesdropping on complex microbial communities [J]. Microbe, 2009,4(7):329-335.
|
[5] |
武传东,闫 倩,辛 亮,等.长期施用氮肥和磷肥对渭北旱塬土壤中氨氧化古菌多样性的影响 [J]. 农业环境科学学报, 2012,4:743-749.
|
[6] |
周磊榴,祝贵兵,王衫允,等.洞庭湖岸边带沉积物氨氧化古菌的丰度、多样性及对氨氧化的贡献 [J]. 环境科学学报, 2013,6: 1741-1747.
|
[7] |
曹 鹏,沈菊培,贺纪正.古菌细胞膜脂在古菌群落组成及其对环境响应研究中的应用 [J]. 应用生态学报, 2012,9:2609-2616.
|
[8] |
林先贵,胡君利.土壤微生物多样性的科学内涵及其生态服务功能 [J]. 土壤学报, 2008,45(5):892-900.
|
[9] |
郭笃发.黄河三角洲土地利用/土地覆被时空变化研究 [D]. 沈阳:沈阳农业大学, 2004.
|
[10] |
Wang Z Y, Xin D M, Gao F M, et al. Microbial community characteristics in a degraded wetland of the Yellow River Delta [J]. Pedosphere, 2010,20(4):466-478.
|
[11] |
Yu S L, Li Y Q, Tang X L, et al. Succession of bacterial community along with the removal of heavy crude oil pollutants by multiple biostimulation treatments in the Yellow River Delta, China [J]. Journal of Environmental Sciences, 2011,23(9):1533-1543.
|
[12] |
何 芝,赵天涛,邢志林,等.典型生活垃圾填埋场覆盖土微生物群落分析 [J]. 中国环境科学, 2015,35(12):3744-3753.
|
[13] |
何苑皞,周国英,王圣洁,等.杉木人工林土壤真菌遗传多样性 [J]. 生态学报, 2014,10(10):2725-2736.
|
[14] |
鲍士旦.土壤农化分析 [M]. 北京:中国农业出版社, 2000.
|
[15] |
翁永玲,官 鹏.黄河三角洲盐渍土盐分特征研究 [J]. 南京大学学报(自然科学), 2006,42(6):602-610.
|
[16] |
吴尊凤,史应武,娄 恺,等.天山北坡垂直自然带土壤古菌多样性分析 [J]. 新疆农业科学, 2012,3:488-495.
|
[17] |
刘冰冰,唐蜀昆,明 红,等.新疆罗布泊地区可培养嗜盐古菌多样性及其功能酶筛选 [J]. 微生物学报, 2011,9:1222-1231.
|
[18] |
Walsh D A, Papke R T, Doolittle W F. Archaeal diversity along a soil salinity gradient prone to disturbance [J]. Environmental Microbiolofy, 2005,7:1655-1666.
|
[19] |
Papke R T, Koenig J E, Rodriguez-Valera F, et al. Frequent recombination in a saltern population of Halorubrum [J]. Science, 2004,306:1928-1929.
|
[20] |
Valenzuela-Encinas C, Neria-Gonzalez I, Alcantara-Hernandez R J, et al. Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico) [J]. Extremophiles, 2008,12:247-254.
|
[21] |
Inoue K, Itoh T, Ohkuma M, et al. Halomarina oriensisgen. nov., sp. nov., a halophilic archaeon isolated from aseawater aquarium [J]. Int. J. Syst. Evol. Microbiol., 2011,61:942-946.
|
[22] |
Al-Mailem D M, Sorkhoh N A, Marafie M, et al. Oil phytoremediation potential of hypersaline coasts of the Arabian Gulf using rhizosphere technology [J]. Bioresour. Technol., 2010,101:5786-5792.
|
[23] |
袁超磊,贺纪正,沈菊培,等.一个红壤剖面微生物群落的焦磷酸测序法研究 [J]. 土壤学报, 2013,1:138-149.
|
[24] |
Nicol G W, Leininger S, Schleper C, et al. The influence of soilpH on the diversity, abundance and transcriptional activity ofammonia oxidizing archaea and bacteria [J]. Environ. Microbiol., 2008,10:2966-2978.
|
[25] |
Jackson C R, Liew K C, Yule C M. Structural and functional changes with depth in microbial communities in a tropical peat swamp forest [J]. Microbiol. Ecol., 2008, online.
|
[26] |
Chen X P, Zhu Y G, Xia Y, et al. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil [J]. Environ. Microbiol., 2008,10:1978-1987.
|
[27] |
鲍林林,陈永娟,王晓燕.北运河沉积物中氨氧化微生物的群落特征 [J]. 中国环境科学, 2015,35(1):179-189.
|
|
|
|