|
|
Nano-TiO2 photocatalytic technology and atmospheric pollution control |
LV Kun, ZHANG Qing-zhu |
Environment Research Institute, Shandong University, Jinan 250100, China |
|
|
Abstract Here the history and basic principles of nano-TiO2 photocatalytic technology were briefly reviewed.The progress and challenges of applying nano-TiO2 photocatalytic technology in eliminating typical atmospheric pollutants were discussed in detail.The results show that nano-TiO2 photocatalytic technology can efficiently remove organic pollutants,NOx,sulfide,as well as CO2 with a general removal ratio of 80~99%.The applications of nano-TiO2 photocatalytic technology in atmospheric pollution control were also summarized.Nano-TiO2 photocatalytic technology has already found its applications in the field of air purification,vehicles exhaust purification,desulfurization of fossil fuels,and control of green-house effect.
|
Received: 29 August 2017
|
|
|
|
|
[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(5358):37-38.
|
[2] |
Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions[J]. Bulletin of Environmental Contamination and Toxicology, 1976,16(6):697-701.
|
[3] |
蔡卫权,李会泉,张懿,等.纳米催化技术用于空气净化[J]. 环境污染治理技术与设备, 2004,5(4):58-61.
|
[4] |
张钱新,王枫亮,谢治杰,等.掺N碳量子点负载于TiO2的复合催化剂光解甲芬那酸研究[J]. 中国环境科学, 2017,37(8):2930-2940.
|
[5] |
李明玉,赵倩,曾小龙,等.TiO2光电催化中光生电子降解对苯醌的行为研究[J]. 中国环境科学, 2015,35(5):1397-1402.
|
[6] |
董永春,白志鹏,张利文,等.纳米TiO2负载织物对室内空气中氨的净化[J]. 中国环境科学, 2005,25(sl):26-29.
|
[7] |
廖振华,陈建军,姚可夫,等.纳米TiO2光催化剂负载化的研究进展[J]. 无机材料学报, 2004,19(1):17-24.
|
[8] |
Fujishima A, Rao T N, Tryk D A. TiO2 photocatalysts and diamond electrodes[J]. Electrochimica Acta, 2000,45(28):4683-4690.
|
[9] |
吕文洲,乔宇祥,刘英.纳米TiO2-光催化灭活水中噬菌体MS2[J]. 中国环境科学, 2015,35(8):2532-2538.
|
[10] |
戴智铭,陈爱平,古正荣,等.室内空气中三氯乙烯在TiO2/AC上的光催化氧化反应动力学[J]. 化学反应工程与工艺, 2001,17(4):297-302.
|
[11] |
王芳,周勇,李萍,等.仿生多孔MgO-TiO2合成及其光催化CO2还原性能[J]. 催化学报, 2016,37(6):863-868.
|
[12] |
中国预防医学研究院环境卫生与卫生工程研究所.纳米光催化涂料对空气中有害物质消除效果检测报告[R]. 北京:中国预防医学研究院, 2001.
|
[13] |
Zhang G, Sun Z, Duan Y, et al. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde[J]. Applied Surface Science, 2017,412:105-112.
|
[14] |
Qin Z B, Zhang W T, Qian G P, et al. The effects of different ways of adding nano-TiO2 to concrete on the degradation performance of NO2[J]. Materials Research Innovations, 2015, 19(10):148-154.
|
[15] |
支静涛,刘浩,于贤群,等.多壁碳纳米管(MWCNTs)负载锰掺杂二氧化钛(Mn-TiO2)在SO2光催化脱除中的应用[J]. 南京师范大学学报(工程技术版), 2016,16(3):21-28.
|
[16] |
于兵川,吴洪特,张万忠.光催化纳米材料在环境保护中的应用[J]. 石油化工, 2005,34(5):491-495.
|
[17] |
孙凤英,马春磊.纳米TiO2降解大气污染物的应用研究[J] 低温建筑技术, 2007,119:120-121.
|
[18] |
Diebold U. The surface science of titanium dioxide[J]. Surface Science Reports, 2003,48(5):53-229.
|
[19] |
许林军,施莼.纳米的光催化技术研究进展及其在舰艇舱室空气净化中的应用前景[J]. 海军医学杂志, 2003,24(2):179-181.
|
[20] |
Xu H, Ouyang S, Liu L, et al. Recent advances in TiO2-based photocatalysis[J]. Journal of Materials Chemistry A, 2014, 2(32):12642-12661.
|
[21] |
Chen J, Ollis D F, Rulkens W H, et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized TiO2 suspensions. Part (I):photocatalytic activity and pH influence[J]. Water Research, 1999,33(3):661-668.
|
[22] |
丁延伟,范崇政,吴缨,等.纳米TiO2光催化降解CH3OH、HCHO及HCOOH反应的研究[J]. 分子催化, 2002,16(3):175-180.
|
[23] |
张拦,杨瑞先,丁梧秀.硫镧共掺杂纳米TiO2的制备及甲醛降解性能研究[J]. 功能材料, 2016,47(3):120-124.
|
[24] |
李佳,傅平丰,张彭义,等.纳米Au/TiO2薄膜真空紫外光催化降解甲醛[J]. 中国环境科学, 2010,30(11):1441-1445.
|
[25] |
张前程,张凤宝,张国亮,等.苯在TiO2上的气相光催化反应性能[J]. 中国环境科学, 2003,23(6):661-664.
|
[26] |
Einaga H, Futamura S, Ibusuki T. Photocatalytic decomposition of benzene over TiO2 in a humidified airstream[J]. Physical Chemistry Chemical Physics, 1999,1(20):4903-4908.
|
[27] |
Abdennouri M, Baâlala M, Galadi A, et al. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays[J]. Arabian Journal of Chemistry, 2016,9:S313-S318.
|
[28] |
Christoforidis K C, Figueroa S J A, Fernández-García M. Iron-sulfur codoped TiO2 anatase nano-materials:UV and sunlight activity for toluene degradation[J]. Applied Catalysis B:Environmental, 2012,117:310-316.
|
[29] |
Zhao N, Zhang Q, Wang W. Atmospheric oxidation of phenanthrene initiated by OH radicals in the presence of O2 and NOx-A theoretical study[J]. Science of The Total Environment, 2016,563:1008-1015.
|
[30] |
Shi X, Yu W, Xu F, et al. PBCDD/F formation from radical/radical cross-condensation of 2-Chlorophenoxy with 2-Bromophenoxy, 2,4-Dichlorophenoxy with 2,4-Dibromophenoxy, and 2,4,6-Trichlorophenoxy with 2,4,6-Tribromophenoxy[J]. Journal of Hazardous Materials, 2015, 295:104-111.
|
[31] |
Zhang Q, Gao R, Xu F, et al. Role of water molecule in the gas-phase formation process of nitrated polycyclic aromatic hydrocarbons in the atmosphere:A computational study[J]. Environmental Science & Technology, 2014,48(9):5051-5057.
|
[32] |
Li Y, Shi X, Zhang Q, et al. Computational evidence for the detoxifying mechanism of epsilon class glutathione transferase toward the insecticide DDT[J]. Environmental Science & Technology, 2014,48(9):5008-5016.
|
[33] |
Tasinato N, Moro D, Stoppa P, et al. Adsorption of F2C=CFCl on TiO2 nano-powder:Structures, energetics and vibrational properties from DRIFT spectroscopy and periodic quantum chemical calculations[J]. Applied Surface Science, 2015,353:986-994.
|
[34] |
Wang H, Ji Y, Chen J, et al. Theoretical investigation on the adsorption configuration and •OH-initiated photocatalytic degradation mechanism of typical atmospheric VOCs styrene onto (TiO2)n clusters[J]. Scientific Reports, 2015,5:15059.
|
[35] |
Salazar-Villanueva M, Cruz-López A, Zaldivar-Cadena A A, et al. Effect of the electronic state of Ti on M-doped TiO2 nanoparticles (M=Zn, Ga or Ge) with high photocatalytic activities:A experimental and DFT molecular study[J]. Materials Science in Semiconductor Processing, 2017,58:8-14.
|
[36] |
Hashimoto K, Wasada K, Toukai N, et al. Photocatalytic oxidation of nitrogen monoxide over titanium (IV) oxide nanocrystals large size areas[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2000,136(1):103-109.
|
[37] |
Dalton J S, Janes P A, Jones N G, et al. Photocatalytic oxidation of NOx gases using TiO2:a surface spectroscopic approach[J]. Environmental Pollution, 2002,120(2):415-422.
|
[38] |
Ichiura H, Kitaoka T, Tanaka H. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound[J]. Chemosphere, 2003,51(9):855-860.
|
[39] |
高远,徐安武,祝静艳,等.RE/TiO2用于NO2-光催化氧化的研究[J]. 催化学报, 2001,22(1):53-56.
|
[40] |
陈鹏,刘红婧,董帆,等.可见光诱导Ag/AgX等离子体光催化净化NO的性能与机理[J]. 科学通报, 2016,61(32):3482-3489.
|
[41] |
李欣蔚,张会均,文莉,等.K掺杂C3N4的原位合成、禁带结构解析及其可见光催化性能增强机制[J]. 科学通报, 2016, 61(24):2707-2716.
|
[42] |
Dong F, Wang Z, Li Y, et al. Immobilization of polymeric g-C3N4 on structured ceramic foam for efficient visible light photocatalytic air purification with real indoor illumination[J]. Environmental Science & Technology, 2014,48(17):10345.
|
[43] |
孙艳娟,王瑞,董帆,等.TiO2/g-C3N4在泡沫陶瓷表面的负载及光催化空气净化性能增强[J]. 环境科学学报, 2017,37(6):2265-2274.
|
[44] |
Canela M C, Alberici R M, Jardim W F. Gas-phase destruction of H2S using TiO2/UV-VIS[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1998,112(1):73-80.
|
[45] |
郭建辉,金振声,张敏,等.TiO2光催化消除H2S的研究[J]. 感光科学与光化学, 2004,22(3):211-217.
|
[46] |
袭著革,李官贤,张华山,等.复合纳米TiO2净化典型室内空气污染物初步研究[J]. 解放军预防医学杂志, 2003,21(5):316-318.
|
[47] |
Linsebigler A L, Lu G, Yates Jr J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews, 1995,95(3):735-758.
|
[48] |
徐用军,刘长江,朱明阳.钯/二氧化钛催化还原二氧化碳为甲酸盐的研究[J] 松辽学刊(自然科学版), 1995,3:16-20.
|
[49] |
Gui M M, Chai S P, Xu B Q, et al. Enhanced visible light responsive MWCNT/TiO2, core-shell nanocomposites as the potential photocatalyst for reduction of CO2, into methane[J]. Solar Energy Materials & Solar Cells, 2014,122(3):183-189.
|
[50] |
Ko?í K, Obalová L, Matějová L, et al. Effect of TiO2 particle size on the photocatalytic reduction of CO2[J]. Applied Catalysis B:Environmental, 2009,89(3):494-502.
|
[51] |
Liu L, Zhao H, Andino J M, et al. Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals:Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry[J]. ACS Catalysis, 2012,2(8):1817-1828.
|
[52] |
Chen L, Graham M E, Li G, et al. Photoreduction of CO2 by TiO2 nanocomposites synthesized through reactive direct current magnetron sputter deposition[J]. Thin Solid Films, 2009,517(19):5641-5645.
|
[53] |
古政荣,陈爱平,戴智铭,等.活性炭-纳米二氧化钛复合光催化空气净化网的研制[J]. 华东理工大学学报, 2000,26(4):367-371.
|
[54] |
陈中颖,余刚,张彭义,等.碳黑改性纳米TiO2薄膜广催化降解有机污染物[J]. 科学通报, 2001,46(23):1961-1965.
|
[55] |
Burkardt A, Weisweiler W, Van Den Tillaart J A, et al. Influence of the V2O5 loading on the structure and activity of V2O5/TiO2 SCR catalysts for vehicle application[J]. Topics in Catalysis, 2001,16(1):369-375.
|
[56] |
Shan W, Liu F, He H, et al. An environmentally-benign CeO2-TiO2 catalyst for the selective catalytic reduction of NOx with NH3 in simulated diesel exhaust[J]. Catalysis Today, 2012, 184(1):160-165.
|
[57] |
况栋梁,裴建中,李蕊,等.改性纳米二氧化钛在净化汽车尾气中的应用研究[J]. 材料导报, 2014,28(20):18-22.
|
[58] |
张龙,葛折圣.半柔性路面负载纳米TiO2降解汽车尾气技术[J]. 华南地震, 2014,34(s1):153-157.
|
[59] |
Dzwigaj S, Louis C, Breysse M, et al. New generation of titanium dioxide support for hydrodesulfurization[J]. Applied Catalysis B:Environmental, 2003,41(1):181-191.
|
[60] |
秦毅红,张党龙,孙立国,等.La-Ce/TiO2催化一氧化碳还原二氧化硫的研究[J]. 硫酸工业, 2016,(2):65-68.
|
[61] |
李大骥,罗永刚.纳米级二氧化钛脱硫及再生性能的实验研究[J]. 能源研究与利用, 2001,(5):29-31.
|
[62] |
Rincón J, Camarillo R, Martínez F, et al. Greenhouse Effect Mitigation Through Photocatalytic Technology[M]. Environment, Energy and Climate Change I. Springer International Publishing, 2014:375-404.
|
[63] |
Tan L L, Ong W J, Chai S P, et al. Visible-light-active oxygen-rich TiO2, decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction[J]. Applied Catalysis B:Environmental, 2015,179:160-170.
|
[64] |
Ganesh I. Conversion of carbon dioxide into methanol-a potential liquid fuel:Fundamental challenges and opportunities (a review)[J]. Renewable and Sustainable Energy Reviews, 2014,31:221-257.
|
|
|
|