|
|
Effects of AgNPs and cadmium on root morphology and leaves physiological indexes of Arabidopsis thalian |
ZHANG Chuan-ling1, JIANG Hong-sheng2, LI Chang-jiang1, TANG Qi-hui1, WANG You1, YIN Li-yan1 |
1. Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; 2. Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China |
|
|
Abstract To investigate the combined toxictiy of AgNPs and Cd2+ on Arabidopsis thaliana seedlings, the root length, the number of root hairs, the content of photosynthetic pigment and protein, superoxide dismutade (SOD) and peroxidase (POD) activity were measured after one week exposure to different concentrations of PVP coated-AgNPs and Cd2+. Results showed that high concentration (5mg/L) of Cd2+ could significantly inhibit root elongation and increase the protein content and SOD, POD activity. After adding AgNPs in high concentration (5mg/L) of Cd2+ treatment, the inhibition effect of Cd2+ on Arabidopsis thaliana root length was significantly increased while the inhibition effect of AgNPs on Arabidopsis thaliana root hairs was decreased. After adding AgNPs in low concentration (0.1and 1mg/L) of Cd2+ treatment, the inhibition effect of Cd2+ on Arabidopsis thaliana photosynthetic pigment content were significantly increased. In Cd2+ treatment, SOD, POD activity reached the highest when the seedlings were exposured to 1mg/L AgNPs. Above results showed that Cd2+ and AgNPs had interaction effects on root morphology and leaves physiological indexes of Arabidopsis thaliana.
|
Received: 28 September 2017
|
|
|
|
|
[1] |
Chernousova S, Epple M. Silver as antibacterial agent:Ion, nanoparticle, and meta[J]. Angewandte Chemie International Edition, 2013,52(6):1636-1653.
|
[2] |
Stampoulis D, Sinha S K, White J C. Assay-dependent phytotoxicity of nanoparticles to plants[J]. Environmental Science & Technology, 2009,43(24):9473-9479.
|
[3] |
王震宇,赵建,李娜,等.人工纳米颗粒对水生生物的毒性效应及其机制研究进展[J]. 环境科学, 2010,31(6):1409-1418.
|
[4] |
苑志华,汤晓琳,白炎青,等.纳米银对小球藻光合作用和呼吸作用的影响[J]. 中国环境科学, 2013,33(8):1468-1473.
|
[5] |
Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza[J]. Environmental Toxicology and Chemistry, 2012,31(8):1880-1886.
|
[6] |
Jiang H S, Yin L Y, Ren N N, et al. Silver nanoparticles induced reactive oxygen species via photosynthetic energy transport imbalance in an aquatic plant[J]. Nanotoxicology, 2017, 11(2):157-167.
|
[7] |
Zhou H, Zeng M, Zhou X, et al. Heavy metal translocation and accumulation in iron plaques and plant tissues for 32 hybrid rice (Oryza sativa L.) cultivars[J]. Plant & Soil, 2015,386(1/2):317-329.
|
[8] |
詹杰,魏树和,牛荣成.我国稻田土壤镉污染现状及安全生产新措施[J]. 农业环境科学学报, 2012,31(7):1257-1263.
|
[9] |
赵艳玲,张长波,刘仲齐.植物根系细胞抑制镉转运过程的研究进展[J]. 农业资源与环境学报, 2016,33(3):209-213.
|
[10] |
秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J]. 生态学报, 1998,18(3):320-325.
|
[11] |
徐正浩,沈国军,诸常青,等.植物镉忍耐的分子机理[J]. 应用生态学报, 2006,17(6):1112-1116.
|
[12] |
Tuomainen M H, Nunan N, Lehesranta S J, et al. Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions[J]. Proteomics, 2006,6(12):3696-3706.
|
[13] |
Jin X, Yang X, Islam E, et al. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii, Hance[J]. Journal of Hazardous Materials, 2008, 156(1-3):387-397.
|
[14] |
Sun Y, Zhou Q, Diao C. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum,L[J]. Bioresource Technology, 2008,99(5):1103-1110.
|
[15] |
Garg N, Kaur H. Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan, L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi[J]. Acta Physiologiae Plantarum, 2012,34(4):1363-1380.
|
[16] |
李伟强,毛任钊,刘小京.胁迫时间与非毒性离子对重金属抑制拟南芥种子发芽及幼苗生长的影响[J]. 应用生态学报, 2005,16(10):1943-1947.
|
[17] |
马锋锋,赵保卫,刁静茹.小麦秸秆生物炭对水中Cd2+的吸附特性研究[J]. 中国环境科学, 2017,37(2):551-559.
|
[18] |
傅海霞,刘怡,董志英,等.抗生素与重金属复合污染的生态毒理效应研究进展[J]. 环境工程, 2016,34(4):60-63.
|
[19] |
Sun H, Zhang X, Niu Q, et al. Enhanced Accumulation of Arsenate in Carp in the Presence of Titanium Dioxide Nanoparticles[J]. Water Air & Soil Pollution, 2007,178(1-4):245-254.
|
[20] |
Baun A, Sorensen S N, Rasmussen R F, et al. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C60[J]. Aquatic Toxicology, 2008,86(3):379-387.
|
[21] |
Fan W, Cui M, Liu H, et al. Nano-TiO2enhances the toxicity of copper in natural water to Daphnia magna[J]. Environmental Pollution, 2011,159(3):729-734.
|
[22] |
Rosenfeldt R R, Seitz F, Zubrod J P, et al. Does the presence of titanium dioxide nanoparticles reduce copper toxicity? A factorial approach with the benthic amphipod Gammarus fossarum[J]. Aquatic Toxicology, 2015,165:154-159.
|
[23] |
王汉卫,王玉军,陈杰华,等.改性纳米碳黑用于重金属污染土壤改良的研究[J]. 中国环境科学, 2009,29(4):431-436.
|
[24] |
Cheng Y, Yin L, Lin S, et al. Toxicity reduction of polymerstabilized silver nanoparticles by sunlight[J]. Journal of Physical Chemistry C, 2011,115(11):4425-4432.
|
[25] |
陈斌,张传玲,江红生,等.纳米银诱导拟南芥活性氧自由基的积累和抗氧化系统的改变[J]. 基因组学与应用生物学, 2017(4):1646-1653.
|
[26] |
冯锋,张福锁,杨新泉.植物营养研究:进展与展望[M]. 北京:中国农业大学出版社, 2000:12-21.
|
[27] |
弋良朋,马健,李彦.3种荒漠盐生植物根系及根毛形态特征的比较研究[J]. 植物研究, 2007,27(2):204-211.
|
[28] |
高林,陈春丽.NaCl胁迫对水稻品种中花11幼苗根系生长发育的影响[J]. 种子, 2012,31(7):7-12.
|
[29] |
杨敏,黎晓峰,玉永雄,等.铝对苜蓿生长、结瘤及根毛变形的影响[J]. 农业环境科学学报, 2007,26(1):202-206.
|
[30] |
Mukherji S, Maitra P. Toxic effects of lead on growth and metabolism of germinating rice (Oryza sativa L.) seeds and on mitosis of onion (Allium cepa L.) root tip cells[J]. Indian Journal of Experimental Biology, 1976,14(4):519-521.
|
[31] |
吕笃康,巴音山,赵玉.铜、镉污染对小麦种子萌发及幼苗生长的影响[J]. 种子, 2012,31(9):108-111.
|
[32] |
何九军,王瀚,杨小录.重金属Zn2+胁迫对萝卜种子萌发及幼苗生长和叶绿素合成的影响[J]. 安徽农业科学, 2011,39(33):20348-20350.
|
[33] |
马旭凤,于涛,汪李宏,等.苗期水分亏缺对玉米根系发育及解剖结构的影响[J]. 应用生态学报, 2010,21(7):1731-1736.
|
[34] |
杨忠兰,韦翔华,付旋旋,等.水、氮、镉互作对小白菜生长、镉吸收及土壤微生物量碳的影响[J]. 浙江农业科学, 2016,57(7):1082-1084.
|
[35] |
张杏辉,陈懿.镉胁迫对白菜种子萌发的影响[J]. 南方园艺, 2009,20(6):7-9.
|
[36] |
李隼,黄胜东,赵福庚.重金属镉对水稻根毛细胞钾离子吸收过程的影响[J]. 植物生理学报, 2011,47(5):481-487.
|
[37] |
仇硕,黄苏珍.Cd胁迫下黄菖蒲幼苗根系生长与Cd积累的研究[J]. 植物资源与环境学报, 2008,17(3):33-38.
|
[38] |
Inoue H, Higuchi K, Takahashi M, et al. Three rice nicotianamine synthase genes, OsNAS1, OsNAS2, and OsNAS3are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J]. Plant Journal for Cell & Molecular Biology, 2003,36(3):366-381.
|
[39] |
赵素贞,洪华龙,严重玲.钙对镉胁迫下秋茄叶片光合作用及超微结构的影响[J]. 厦门大学学报(自然版), 2014,53(6):875-882.
|
[40] |
秦建桥,夏北成,赵鹏.五节芒不同种群对Cd污染胁迫的光合生理响应[J]. 生态学报, 2010,20(2):288-299.
|
[41] |
俞萍,高凡,刘杰,等.镉对植物生长的影响和植物耐镉机制研究进展[J]. 中国农学通报, 2017,33(11):89-95.
|
[42] |
徐勤松,施国新,周红卫,等.Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响[J]. 生态学杂志, 2003,22(1):5-8.
|
[43] |
李裕红,黄小瑜.重金属污染对植物光合作用的影响[J]. 海峡科学, 2006,(6):23-24.
|
[44] |
Demmig A, Barbara, William W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science, 1996,1(1):21-26.
|
[45] |
Jiang H S, Qiu X N, Li G B, et al. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza[J]. Environmental Toxicology & Chemistry, 2014,33(6):1398-1405.
|
[46] |
何任红,马爱军,王艮梅.镉与毒死蜱复合污染对白菜生长及叶绿素、类胡萝卜素含量的影响[J]. 江苏农业科学, 2013,41(8):330-332.
|
[47] |
张露洁,兰利琼,卿人韦,等.几种重金属离子对组培盾叶薯蓣叶绿素含量的影响[J]. 四川大学学报(自然科学版), 2006,43(1):200-205.
|
[48] |
刘璐,闫浩,夏文彤,等.镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014,34(2):478-484.
|
[49] |
朱雪梅,林立金,邵继荣,等.锌铬复合污染对水稻根系抗氧化酶活性的影响[J]. 农业工程学报, 2008,24(3):203-208.
|
[50] |
宇克莉,邹婧,邹金华.镉胁迫对玉米幼苗抗氧化酶系统及矿质元素吸收的影响[J]. 农业环境科学学报, 2010,29(6):1050-1056.
|
[51] |
葛伟,焦韵秋.镉胁迫下2种杨树可溶性蛋白含量的变化研究[J]. 现代农业科技, 2012(1):199-200.
|
[52] |
时萌,王芙蓉,王棚涛.植物响应重金属镉胁迫的耐受性机理研究进展[J]. 生命科学, 2016,28(4):504-512.
|
[53] |
Harada E, Choi Y E, Tsuchisaka A, et al. Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium[J]. Journal of Plant Physiology, 2001, 158(5):655-661.
|
[54] |
Zhu Y L, Pilon-Smits E A, Tarun A S, et al. Cadmium Tolerance and Accumulation in Indian Mustard Is Enhanced by Overexpressing gamma-glutamylcysteine synthetase[J]. Plant Physiology, 1999,121(4):1169-1178.
|
[55] |
Martínez M, Bernal P, Almela C, et al. An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100times more biomass in mine soils[J]. Chemosphere, 2006,64(3):478-485.
|
[56] |
Misra S, Gedamu L. Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants[J]. Theoretical & Applied Genetics, 1989,78(2):161-168.
|
[57] |
陈虹,姜廷波,丁宝建,等.转柽柳金属硫蛋白基因(MT1)烟草的获得及对重金属镉的抗性分析[J]. 农业生物技术学报, 2007,15(2):247-250.
|
[58] |
Lynch I, Cedervall T, Lundqvist M, et al. The nanoparticleprotein complex as a biological entity; a complex fluids and surface science challenge for the 21st century[J]. Advances in Colloid & Interface Science, 2007,134(21):167-174.
|
[59] |
Cedervall T, Lynch I, Lindman S, et al. From the Cover:Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(7):2050-2055.
|
[60] |
Sahoob B, Goswami M, Nag S, et al. Spontaneous formation of a protein corona prevents the loss of quantum dot fluorescence in physiological buffers[J]. Chemical Physics Letters, 2007, 445(4-6):217-220.
|
[61] |
Lynch I, Dawson K A. Protein-nanoparticle interactions[J]. Nano Today, 2008,3(1):40-47.
|
[62] |
徐香玉,武卫华,杜中玉,等.球形纳米银的合成及其与牛血清白蛋白的相互作用[J]. 济宁医学院学报, 2017,40(1):5-8.
|
[63] |
陈述,白珊,王贞,等.牛血清白蛋白与纳米银的相互作用及半胱氨酸的检测[J]. 光谱实验室, 2011,28(4):2047-2049.
|
[64] |
Matsumura Y, Yoshikata K, Kunisaki S, et al. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate[J]. Applied and Environmental Microbiology, 2003,69(7):4278-4281.
|
|
|
|