|
|
Characterization of particulate matter Source profiles and pollutant from alumina industrial furnace in Zhengzhou City |
JIN Meng-jie, ZHANG Yi-shun, ZHAO Jin-shuai, HE Rui-dong, ZHANG Rui-qin, YAN Qi-she |
Research Institute of Environmental Science, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China |
|
|
Abstract The PM2.5 and PM10 samples of a Bayer process alumina company and an α-alumina enterprise in Zhengzhou City were collected by thedilution channel sampling method, the mass concentration of SO2 and NOx were detected by a flue gas analyzer. The 38chemical components in the particulate samples were analyzed to identify source profiles. Using the coefficient of divergence (CD) and the component difference weight distribution function R/U for a comparative study of the source profiles characteristics. The dominant composition of PM2.5 and PM10 in α-alumina plant profiles was Cl-, with the percentage ranging from 18.29% to 25.21%. The Bayer process alumina sourceprofileswas dominated by OC and NO3-, with the percentage ranging from 9.01% to 41.87%. The coefficients of divergence (CD) between PM2.5 and PM10 source profiles from the same process were similar, indicating that the source profiles of PM2.5 might be similar to those in PM10. And the source profiles of the same particle size from different process were differ greatly. The comparison of R/U values showed that EC, Ca, F- and Cl-could be used as the identified components to distinguish the two alumina production processes.
|
Received: 08 August 2019
|
|
|
|
|
[1] |
杨毅,郭尧琦,朱文松,等.我国铝工业经济增长与碳排放脱钩的时空分异研究[J]. 矿冶工程, 2018,38(6):168-172. Yang Y, Guo Y Q, Zhu W S, et al. Discussion of spatio-temporal differentiation for decoupling carbon emissionsfrom economic growth in China's aluminum industry[J]. Mining and Metallurgical Engineering, 2018,38(6):168-172.
|
[2] |
刘大钧.浅谈氧化铝工业污染防治对策[J]. 轻金属, 2011,(2):3-7+10. Liu D Z. Discussion on countermeasures for prevention and control of ammonia industry pollution[J]. Light Metals, 2011,(2):3-7+10.
|
[3] |
王俊萍,杨北海.浅谈我国铝工业清洁生产和污染防控工艺[J]. 中国金属通报, 2017,(9):131-132. Wang J P, Yang B H. Discussion on clean production and pollution prevention and control technology of aluminum industry in China[J]. China Metal Bulletin, 2017,(9):131-132.
|
[4] |
王宁.氧化铝生产技术的发展现状和未来趋势[J]. 冶金与材料, 2018,38(4):90+92. Wang N. Development status and future trend of alumina production technology[J]. Metallurgy & Materials, 2018,38(4):90+92.
|
[5] |
王平利,戴春雷,张成江.城市大气中颗粒物的研究现状及健康效应[J]. 中国环境监测, 2005,(1):83-87. Wang P L, Dai C L, Zhang C J. The study progress in the research for the particular in city air and its effect on human health[J]. Environmental Monitoring in China, 2005,(1):83-87.
|
[6] |
孙青.高温管式炉中煤粉恒温燃烧过程中NOx和SO2释放特性研究[D]. 上海:上海交通大学, 2009. Sun Q. Study on NOx and SO2 release in combustion of coal in high constant temperature tubularfurnace[D]. Shanghai:Shanghai Jiaotong University, 2009.
|
[7] |
朱坦,冯银厂.大气颗粒物来源解析原理、技术及应用[M]. 北京:科学出版社, 2012:1-103. Zhu T, Feng Y C. Principles, technology and application of atmospheric particle source analysis[M]. Beijing:Science Press, 2012:1-103.
|
[8] |
Cai T Q, James S J, Huang W, et al. Sensitivity of source apportionment results to mobile source profiles[J]. Environmental Pollution, 2016,219:821-828.
|
[9] |
Watson J G, Chow J C, Pace T G. Chemical mass balance[M]. Receptor Modeling for Air Quality Management, 1991:83-116.
|
[10] |
Chen P L, Wang T J, Lu X B, et al. Source apportionment of sizefractionated particles during the 2013 Asian Youth Games and the 2014 Youth Olympic Games in Nanjing, China[J]. Science of the Total Environment, 2017,579:860-870.
|
[11] |
Park S S, Sim S Y, Bae M S, et al. Size distribution of water-soluble components in particulate matter emitted from biomass burning[J]. Atmospheric Environment, 2013,73:62-72.
|
[12] |
Vicente E D, Alves C A. An overview of particulate emissions from residential biomass combustion[J]. Atmospheric Research, 2018,199:159-185.
|
[13] |
Timmers V R J H, Achten P A J. Non-exhaust PM emissions from electric vehicles[J]. Atmospheric Environment, 2016,134:10-17.
|
[14] |
Wang J M, Jeong C H, Zimmerman N, et al. Real world vehicle fleet emission factors:Seasonal and diurnal variations in traffic related air pollutants[J]. Atmospheric Environment, 2018,184:77-86.
|
[15] |
Mohiuddin K, Strezov V, Nelson P F, et al. Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia[J]. Atmospheric Environment, 2014,83:72-79.
|
[16] |
Wang K, Tian H Z, Hua S B, et al. A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China:Temporal trends and spatial variation characteristics[J]. Science of the Total Environment, 2016,559:7-14.
|
[17] |
Jia J, Cheng S Y, Yao S, et al. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry[J]. Atmospheric Environment, 2018,182:115-127.
|
[18] |
Mu L, Peng L, Cao J J, et al. Emissions of polycyclic aromatic hydrocarbons from coking industries in China[J]. Particuology, 2013,11(1):86-93.
|
[19] |
朱玲,田秀华,王同健.固定源烟气颗粒物稀释采样器的设计及应用[J]. 环境污染与防治, 2014,36(6):51-54+64. Zhu L, Tian X, Wang T. Design of flue gas dilution sampling system and its application at stationary sources[J]. Environmental Pollution & Control, 2014,36(6):51-54+64.
|
[20] |
GB/T 16157-1996固定污染源排气中颗粒物测定与气态污染物采样方法[S]. GB/T 16157-1996 Determination of particulates and sampling methods of gaseous pollutants emitted from exhaust gas of stationary source[S].
|
[21] |
Wang G. Chemical characteristics of Fine Particles Emitted from Different Chinese Cooking Styles[J]. Aerosol & Air Quality Research, 2015,15(6S):2357-2366.
|
[22] |
刘雯元.3012H型烟气分析仪在废气监测中的应用[J]. 资源节约与环保, 2018,(3):84+88. Liu W Y. Application of 3012H flue gas analyzer in exhaust gas monitoring[J]. Resource Conservation and Environmental Protection, 2018,(3):84+88.
|
[23] |
徐接胜,张维宇,陈爽.浅谈3012H型自动烟尘(气)测试仪的使用和维护管理[J]. 广东化工, 2014,41(10):81-82. Xu J S, Zhang W Y, Chen S. Discussion on the use and maintenance management of 3012H automatic smoke (gas) tester[J]. Guangdong Chemical Industry, 2014,41(10):81-82.
|
[24] |
孙亮.3012H型自动烟尘(气)测试仪操作与维护[J]. 北方环境, 2012,24(3):135-138. Sun L. Operation and maintenance of 3012H automatic smoke (Gas) tester[J]. Northern Environment, 2012,24(3):135-138.
|
[25] |
赵雪艳,谷超,杨焕明,等.新疆奎独乌区域冬季大气重污染过程PM2.5组成特征及来源解析[J]. 环境科学研究, 2017,30(10):1515-1523. Zhao X Y, Gu C, Yang H M, et al. Chemical composition and source apportionment of PM2.5 during a winter air pollution episode in theKui-Du-Wu area of Xinjiang Uygur autonomous region[J]. Research of Environmental Sciences, 2017,30(10):1515-1523.
|
[26] |
黄睿,谈静,刘琼玉.PM2.5中有机碳/元素碳测定探讨[J]. 江汉大学学报(自然科学版), 2016,44(1):11-17. Huang R, TAN J, LIU Q Y. Determination of organic and elemental carbon in fine particulate matters (PM2.5)[J]. Journal of Jianghan University (Natural Science Edition), 2016,44(1):11-17.
|
[27] |
姜欣.PXRF、XRF、AAS及ICP-AES测定土壤样品中重金属元素的对比研究[J]. 污染防治技术, 2019,32(3):30-34. Jiang X. Comparative study on the determination of heavy metals in soil samples by PXRF, XRF, AAS and ICP-AES[J]. Pollution Control Technology, 2019,32(3):30-34.
|
[28] |
高冀,刘强.天然气的开发与应用对环境的影响[J]. 环境与可持续发展, 2009,34(3):37-39. Gao J, Liu Q. Environmental impacts of development and application of natural gas[J]. Environment and Sustainable Development, 2009, 34(3):37-39.
|
[29] |
GB 25465-2010铝工业污染物排放标准[S]. GB 25465-2010 Emission standard of pollutants for aluminum industry[S].
|
[30] |
DB 41/1066-2015工业炉窑大气污染物排放标准[S]. DB 41/1066-2015 Emission standard of air pollutants for industrial Furnace[S].
|
[31] |
李玉洋,耿赫,崔秀,等.天然气成分对硫化氢制氢反应影响的热力学分析[J]. 石油与天然气化工, 2016,45(6):32-37. Li Y Y, Geng H, Cui X, et al. Thermodynamic analysis of the influence of natural gas composition on hydrogen production by hydrogen sulfide[J]. Petroleum and Natural Gas Chemical Industry, 2016,45(6):32-37.
|
[32] |
Wei L J, Geng P. A review on natural gas/diesel dual fuel combustion, emissions and performance[J]. Fuel Processing Technology, 2016,142:264-278.
|
[33] |
董璐.低NOx天然气燃烧器数值模拟及优化[D]. 合肥:安徽工业大学, 2015. Dong L. Numerical simulation and optimization of low NOx natural gas burner[D]. Hefei:Anhui University of Technology, 2015.
|
[34] |
郭旸旸,朱廷钰,高翔,等.我国工业源PM2.5源谱的建立方法及行业排放特征分析[J]. 环境工程, 2016,34(8):158-165. Guo Y Y, Zhu T Y, Gao X, et al. Establishment method and characterristicsanalysisonindustrial PM2.5 sourceprofilesin China[J]. Environmental Engineering, 2016,34(8):158-165.
|
[35] |
刘亚勇,张文杰,白志鹏,等.我国典型燃煤源和工业过程源排放PM2.5成分谱特征[J]. 环境科学研究, 2017,30(12):1859-1868. Liu Y Y, Zhang W J, Bai Z P, et al. Characteristics of PM2.5 chemical source profiles of coal combustion and industrial process in China[J]. Research of Environmental Sciences, 2017,30(12):1859-1868.
|
[36] |
赵雪艳,于高峰,王信梧,等.典型非金属矿物制造工艺过程源成分谱特征[J]. 环境科学, 2019,40(6):2526-2532. Zhao X Y, Yu G F, Wang X Y, et al. Characteristics of source component spectrum of typical non-metallic minerals manufacturing process[J]. Environmental Science, 2019,40(6):2526-2532.
|
[37] |
Bano S, Pervez S, Chow J, et al. Coarse particle (PM10-2.5) source profiles for emissions from domestic cooking and industrial process in Central India[J]. Science of the Total Environment, 2018,627:1137-1145.
|
[38] |
Guo Y Y, Gao X, Zhu T Y, et al. Chemical profiles of PM emitted from the iron and steel industry in northern China[J]. Atmospheric Environment, 2017,150:187-197.
|
[39] |
Chow J C, Watson J G, Ashbaugh L L, et al. Similarities and differences in PM10 chemical source profiles for geological dust from the San Joaquin Valley, California[J]. Atmospheric Environment, 2003,37(9):1317-1340.
|
|
|
|