|
|
Simulated impact of blow-cloud wet scavenging on PM2.5 over the YRD |
ZHOU Guang-qiang, QU Yuan-hao, GAO Wei, YU Zhong-qi |
Yangtze River Delta Center for Environmental Meteorology Prediction and Warning, Shanghai 200030, China |
|
|
Abstract A parameterization scheme for blow-cloud wet scavenging (BWS) was developed and implemented into the Regional Atmospheric Environmental Modeling System for eastern China (RAEMS) to analyze the effect of BWS on the simulation accuracy of PM2.5 over the Yangtze River Delta (YRD) region. Simulations with RAEMS were conducted for the period of Dec. 1st, 2018 through Feb. 28th, 2019. The results showed that RAEMS succeeded in simulating the amount of precipitation and PM2.5 concentration over the YRD region, as well as their spatial pattern and temporal trend. A better performance of PM2.5 simulation was found with the BWS effect included. The mean bias (MB), mean error (ME) and root mean square error (RMSE) decreased by 4.85, 1.72 and 2.35μg/m3, respectively. The normalized mean bias (NMB) and normalized mean error (NME) reduced by 14% and 8%, respectively. The model performance is improved at about 90% cities. The introduction of BWS effect to RAEMS reduced the modeled PM2.5 concentration with the increase of precipitation intensity, which improved RAEMS in terms of wet scavenging processes. The disadvantage was found that the BWS effect exacerbates underestimation of PM2.5 concentration at some YRD cities and it may be related to model bias of other processes.
|
Received: 10 December 2019
|
|
|
|
|
[1] |
宓科娜,庄汝龙,梁龙武,等.长三角PM2.5时空格局演变与特征——基于2013~2016年实时监测数据[J]. 地理研究, 2018,37(8):1641-1654. Mi K N, Zhuang R L, Liang L W, et al. Spatio-temporal evolution and characteristics of PM2.5 in the Yangtze River Delta based on real-time monitoring data during 2013~2016[J]. Geographical Research, 2018,37(8):1641-1654.
|
[2] |
Donkelaar A, Martin R, Brauer M, et al. Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth:Development and application[J]. Environmental Health Perspectives, 2010,118(6):847-855.
|
[3] |
黄鹂鸣,王格慧,王荟,等.南京市空气中颗粒物PM10、PM2.5污染水平[J]. 中国环境科学, 2002,22(4):47-50. Huang L M, Wang G H, Wang H, et al. Pollution level of the airborne particulate matter (PM10, PM2.5) in Nanjing City[J]. China Environmental Science, 2002,22(4):47-50.
|
[4] |
姜蕴聪,杨元建,王泓,等.2015~2018年中国代表性城市PM2.5浓度的城乡差异[J]. 中国环境科学, 2019,39(11):4552-4560. Jiang Y C, Yang Y J, Wang H, et al. Urban-rural differences in PM2.5 concentrations in the representative cities of China during 2015~2018[J]. China Environmental Science, 2019,39(11):4552-4560.
|
[5] |
周奕珂,朱彬,韩志伟,等.长江三角洲地区冬季能见度特征及影响因子分析[J]. 中国环境科学, 2016,36(3):660-669. Zhou Y K, Zhu B, Han Z W, et al. Analysis of visibility characteristics and connecting factors over the Yangtze River Delta Region during winter time[J]. China Environmental Science, 2016,36(3):660-669.
|
[6] |
王伟,孔少飞,刘海彪,等.南京市春节前后大气PM2.5中重金属来源及健康风险评价[J]. 中国环境科学, 2016,36(7):2186-2195. Wang W, Kong S F, Liu H B, et al. Sources and risk assessment of heavy metals in PM2.5 around 2014 Spring Festival in Nanjing[J]. China Environmental Science, 2016,36(7):2186-2195.
|
[7] |
Shang, Y., Sun, Z., Cao, J., et al. Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality[J]. Environment international, 2013,54:100-111.
|
[8] |
薛文博,付飞,王金南,等.中国PM2.5跨区域传输特征数值模拟研究[J]. 中国环境科学, 2014,34(6):1361-1368. Xue W B, Fu F, Wang J N, et al. Numerical study on the characteristics of regional transport of PM2.5 in China[J]. China Environmental Science, 2014,34(6):1361-1368.
|
[9] |
陈刚,刘佳媛,皇甫延琦,等.合肥城区PM10及PM2.5季节污染特征及来源解析[J]. 中国环境科学, 2016,36(7):1938-1946. Chen G, Liu J Y, Huang Fu Y Q, et al. Seasonal variations and source apportionment of ambient PM10 and PM2.5 at urban area of Hefei, China[J]. China Environmental Science, 2016,36(7):1938-1946.
|
[10] |
周广强,谢英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J]. 中国环境科学, 2016,36(8):2251-2259. Zhou G Q, Xie Y, Wu J B, et al. WRF-Chem based PM2.5 forecast and bias analysis over the East China Region[J]. China Environmental Science, 2016,36(8):2251-2259.
|
[11] |
Zhou G, Xu J, Xie Y, et al. Numerical air quality forecasting over Eastern China:An operational application of WRF-Chem[J]. Atmos. Environ., 2017,153:94-108.
|
[12] |
Hu M, Jing Z, Wu Z. Chemical compositions of precipitation and scavenging of particles in Beijing[J]. Sci. China Ser. B, 2005,48:265-272.
|
[13] |
Textor C, Schulz M, Guibert S, et al. Analysis and quantification of the diversities of aerosol life cycles within AeroCom[J]. Atmos. Chem. Phys., 2006,6:1777-1813.
|
[14] |
Slinn W. Precipitation scavenging, in:Atmospheric science and power Production[C]//edited by:Randerson D, Doc. DOE/TIC-27601, Tech. Inf. Cent., Off. Of Sci. and Tech. Inf., U.S. Dep. Of Energy, Washington, D.C, 1984.
|
[15] |
董群,赵普生,陈一娜.降雨对不同粒径气溶胶粒子碰撞清除能力[J]. 环境科学, 2016,37(10):3686-3692. Dong Q, Zhao P S, Chen Y N. Impact of collision removal of rainfall on aerosol particles of different sizes[J]. Environmental Science, 2016,37(10):3686-3692.
|
[16] |
唐孝炎,张远航,邵敏.大气环境化学[M]. 第2版,北京:高等教育出版社, 2006. Tang X Y, Zhang Y H, Shao M. Atmospheric environmental chemistry[M]. 2nd eds., Beijing:Higher Education Press, 2006.
|
[17] |
Bae S, Jung C, Kim Y. Derivation and verification of an aerosol dynamics expression for the below-cloud scavenging process using the moment method[J]. J. Aerosol Sci., 2010,41:266-280.
|
[18] |
Barth M, Rasch P, Kiehl J, et al. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model:Description, evaluation, features, and sensitivity to aqueous chemistry[J]. J. Geophys. Res.-Atmos., 2010,105:1387-1415.
|
[19] |
Stier P, Feichter J, Kinne S, et al. The aerosol-climate model ECHAM5-HAM[J]. Atmos. Chem. Phys., 2005,5:1125-1156.
|
[20] |
Xu D, Ge B, Chen X, et al. Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China[J]. Atmos. Chem. Phys., 2019,19:15569-15581.
|
[21] |
许建明,高伟,瞿元昊.上海地区降雨清除PM2.5的观测研究[J]. 环境科学学报, 2017,37(9):3271-3279. Xu J M, Gao W, Qu Y H. Observation of the wet scavenge effect of rainfall on PM2.5 in Shanghai[J]. Acta Scientiae Circumstantiae, 2017,37(9):3271-3279.
|
[22] |
Wang Z, Xie F, Sakurai T, et al. MICS Asia II:Model inter-comparison and evaluation of acid deposition[J]. Atmos. Environ., 2008, 42:3528-3542.
|
[23] |
周广强,高伟,谷怡萱,等. WRF-Chem模式降水对上海PM2.5预报的影响[J]. 环境科学学报, 2017,37(12):4476-4482. Zhou G Q, Gao W, Gu Y X, et al. Impact of precipitation on Shanghai PM2.5 forecast using WRF-Chem[J]. Acta Scientiae Circumstantiae, 2017,37(12):4476-4482.
|
[24] |
Grell G, Peckham S, Schmitz R, et al. Fully coupled "online" chemistry within the WRF model[J]. Atmos. Environ., 2005,39:6957-6975.
|
[25] |
常炉予,许建明,周广强,等.上海典型持续性PM2.5重度污染的数值模拟[J]. 环境科学, 2016,37(3):38-46. Chang L Y, Xu J M, Zhou G Q, et al. A numerical study of typical heavy air pollution episode of PM2.5 in Shanghai[J], Environmental Science, 2016,37(3):38-46.
|
[26] |
Emmons L, Walters S, Hess P, et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4(MOZART-4)[J]. Geosci. Model Dev., 2010,3:43-67.
|
[27] |
Guenther A, Karl T, Harley P, et al. Estimates of global terrestial isoprene emissions using MEGAN (model of emissions of gases and aerosols from nature). Atmos. Chem. Phys., 2006,6:3181-3210.
|
[28] |
GB3095-2012环境空气质量标准[S]. GB3095-2012 Ambient air quality standards[S].
|
[29] |
HJ633-2012环境空气质量指数技术规定(试行)[S]. HJ633-2012 Technical regulation on ambient air quality index (on trial)[S].
|
[30] |
Andronache, C. Estimates of sulfate aerosol wet scavenging coefficient for locations in the Eastern United States[J]. Atmos. Environ., 2004,38:795-804.
|
[31] |
Andronache, C. Precipitation removal of ultrafine aerosol particles from the atmospheric boundary layer[J]. J. Geophys. Res.-Atmos., 2004,109.
|
[32] |
Jylhä K. Empirical scavenging coefficients of radioactive substances released from Chernobyl[J]. Atmos. Environ. Part A General Topics, 1991,25(2):263-270.
|
[33] |
Okita T, Hara H, Fukuzaki N. Measurements of atmospheric SO2 and SO42-, and determination of the wet scavenging coefficient of sulfate aerosols for the winter monsoon season over the Sea of Japan[J]. Atmos. Environ., 1996,30:3733-3739.
|
[34] |
Wang X, Zhang L, Moran M. Bulk or modal parameterizations for below-cloud scavenging of fine, coarse, and 430giant particles by both rain and snow[J], Journal of Advances in Modeling Earth Systems, 2014,6:1301-1310.
|
[35] |
Wang X, Zhang L, Moran M. Development of a new semi-empirical parameterization for below-cloud scavenging of size-resolved aerosol particles by both rain and snow[J]. Geosci. Model Dev., 2014,7:799-819.
|
[36] |
Xu D, Ge B, Wang Z, et al. Below-cloud wet scavenging of soluble inorganic ions by rain in Beijing during the summer of 2014[J]. Environ. Pollut., 2017,230:963-973.
|
[37] |
彭红,秦瑜.降水对气溶胶粒子清除的参数化[J]. 大气科学, 1992,16(5):622-630. Peng H, Qin Y. The Parameterization of the Influence of Precipitation on the washout of Aerosol Particles[J]. Chinese Journal of Atmospheric Sciences, 1992,16(5):622-630.
|
[38] |
Zhang B, Wang Y, Hao J. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditions in winter[J]. Atmos. Chem. Phys., 2015,15(5):2387-2404.
|
[39] |
王哲,王自发,李杰,等.气象-化学双向耦合模式(WRF-NAQPMS)研制及其在京津冀秋季重霾模拟中的应用[J]. 气候与环境研究, 2014,19(2):153-163. Wang Z, Wang Z F, Li J, et al. Development of a Meteorology-Chemistry Two-Way Coupled Numerical Model (WRF-NAQPMS) and Its Application in a Severe Autumn Haze Simulation over the Beijing-Tianjin-Hebei Area, China[J]. Climatic and Environmental Research, 2014,19(2):153-163.
|
[40] |
Zhou G, Xu J, Gao W, et al. Characteristics of PM1over Shanghai, relationships with precursors and meteorological variables and impacts on visibility[J]. Atmos. Environ., 2018,
|
[41] |
赵海波,郑楚光.降雨过程中气溶胶湿沉降的数值模拟[J]. 环境科学学报, 2005,25(12):1590-1596. Zhao H B, Zheng C G. Numerical simulation of wet removal of aerosols when raindrop falling[J]. Acta Scientiae Circumstantiae, 2005,25(12):1590-1596.
|
|
|
|