|
|
Dust emission characteristics of construction activities in Chengdu |
FAN Wu-bo1,2, CHEN Jun-hui1, TANG Bin-yan1, FENG Xiao-qiong1, SUN Hai-long3, ZHANG Yi1, WANG Jie1, JIN Chen-yang1, LUO li-hong1, JIANG Tao4, WU Kai4, SUN Shu1, JIANG Tao1, QIAN Jun1, LIU Zheng1 |
1. Sichuan Academy of Environment Sciences, Chengdu 610041, China; 2. Institute of New Energy and Low-carbon Technology, Sichuan University, Chengdu 610207, China; 3. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China; 4. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmosphere Sciences, Chengdu University of Information Technology, Chengdu 610225, China |
|
|
Abstract Based on dust emission monitoring data from 112 construction sites including various types of buildings and municipal engineering sites in Chengdu with Dust TRAK TM aerosol (dust) monitor, the emission characteristics of different construction sites and their downwind dust concentration trend were studied. Additionally, the CALPUFF software was used to simulate the diffusion characteristics of one construction site in Xindu District of Chengdu. The results showed that the dust emission concentration ranged between 0.13 and 2.91mg/m3 in Chengdu. The average dust concentration at house construction sites was 0.94mg/m3, which was higher than that at municipal construction sites. The dust concentration at medium and small construction sites was higher than the average concentration of 0.61mg/m3 at large construction sites. The average dust concentration at earthwork construction phase was about 1.21mg/m3, which was much higher than those at the foundation construction, main construction, and decoration phases. The dust emission concentration showed a periodic alternation between high and low in Chengdu. The maximum difference between high and low concentration at the earthwork construction phase reached 0.6mg/m3. The dust concentration increased in the 5 to 15m downwind area of the plant boundary, and then decreased to a stable level (0.1~0.2mg/m3) at the distance around 50m. The CALPUFF model showed the capacity to simulate the diffusion trend of construction dust in Chengdu from the macro perspective, however it was still a challenge to capture the detailed diffusion characteristics of construction dust in the downwind direction.
|
Received: 09 February 2020
|
|
|
|
|
[1] |
Mueller S F, Mallard J W, Mao Q, et al. Emission factors for fugitive dust from bulldozers working on a coal pile[J]. Journal of the Air & Waste Management Association, 2015,65(1):27-40.
|
[2] |
张立坤,李令军,姜磊,等.北京建筑施工裸地时空变化及扬尘污染排放[J]. 环境科学, 2019,40(1):135-142. Zhang L K, Li L J, Jiang L, et al. Spatial and temporal distribution characteristics and fugitive dust emission of building sites in Beijing[J]. Environmental Science, 2019,40(1):135-142.
|
[3] |
薛亦峰,周震,黄玉虎,等.北京市建筑施工扬尘排放特征[J]. 环境科学, 2017,38(6):2231-2237. Xue Y F, Zhou Z, Huang Y F, et al. Fugitive dust emission characteristics from building construction sites of Beijing[J]. Environmental Science, 2017,38(6):2231-2237.
|
[4] |
Edvardsson K, Magnusson R. Monitoring of dust emission on gravel roads:Development of a mobile methodology and examination of horizontal diffusion[J]. Atmospheric Environment, 2009,43(4):889-896.
|
[5] |
Lee C H, Tang L w, Chang C T. Modeling of fugitive dust emission for construction sand and gravel processing plant[J]. Environmental Science & Technology, 2001,35(10):2073-2077.
|
[6] |
肖晗,杨晓春,吴其重,等.西安市建筑施工扬尘排放的模型估算[J]. 环境科学学报, 2019,39(1):222-228. Xiao H, Yang X C, Wu Q Z, et al. Estimate emissions of construction fugitive dust in Xi'an[J]. Acta Scientiae Circumstantiae, 2019,39(1):222-228.
|
[7] |
黄玉虎,韩凯丽,陈丽媛,等.北京市混凝土搅拌站扬尘排放因子及排放清单[J]. 中国环境科学, 2017,31(10):3699-3707. Huang Y H, Han K L, Chen L Y, et al. Emission factor and inventory for fugitive dust from concrete batching plants in Beijing[J]. China Environmental Science, 2017,31(10):3699-3707.
|
[8] |
吴一鸣,王乙斐,周怡静,等.1995~2015年中国风蚀扬尘TSP、PM10和PM2.5排放清单及未来趋势预测[J]. 中国环境科学, 2019,39(3):908-914. Wu Y M, Wang Y F, Zhou Y J, et al. An inventory of atmospheric wind erosion dust emissions of China, 1995~2015[J]. China Environmental Science, 2019,39(3):908-914.
|
[9] |
Appel K W, Pouliot G A, Simon H, et al. Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0[J]. Geoscientific Model Development Discussions, 2013,6(1):1859-1899.
|
[10] |
刘奥博,吴其重,陈雅婷,等.北京市平原区裸露地风蚀扬尘排放量[J]. 中国环境科学, 2018,38(2):471-477. Liu A B, Wu Q Z, Chen Y T, et al. Estimation of dust emissions from bare soil erosion over Beijing plain area[J]. China Environmental Science, 2018,38(2):471-477.
|
[11] |
范武波,陈军辉,冯小琼,等.城市扬尘污染排放研究现状及展望[A].//中国环境科学学会.中国环境科学学会科学与技术年会论文集(第一卷)[C]. 北京:中国环境科学出版社, 2017:1546-1555. Fan W B, Chen J H, Feng X Q, et al. Current status and prospects of urban dust pollution emission research[A].//Chinese society for environmental sciences. Proceedings of the annual conference of science and technology of Chinese society of environmental sciences (Volume 1)[C]. Beijing:China Environmental Science Press, 2017:1546-1555.
|
[12] |
于瑞莲,郑权,刘贤荣,等.南昌市扬尘PM2.5中多环芳烃的来源解析及健康风险评价[J]. 环境科学, 2019,40(4):1657-1663. Yu R L, Zhang Q, Liu X R, et al. Sources analysis and health risk assessment of polycyclic aromatic hydrocarbons in the PM2.5 fraction of fugitive dust in Nanchang city[J]. Environmental Science, 2019, 40(4):1656-1663.
|
[13] |
田莎莎,张显,卞思思,等.沈阳市PM2.5污染组分特征及其来源解析[J]. 中国环境科学, 2019,39(2):487-496. Tian S S, Zhang X, Bian S S, et al. Characteristics of PM2.5 pollution components and their sources in Shenyang[J]. China Environmental Science, 2019,39(2):487-496.
|
[14] |
林瑜,叶芝祥,杨怀金,等.成都市中心城区大气PM1的污染特征及来源解析[J]. 中国环境科学, 2017,37(9):3220-3226. Lin Y, Ye Z X, Yang H J, et al. Pollution level and source apportionment of atmospheric particles PM1 in downtown area of Chengdu[J]. China Environmental Science, 2017,37(9):3220-3226.
|
[15] |
Han S, Youn J S, Jung Y W. Characterization of PM10 and PM2.5 source profiles for resuspended road dust collected using mobile sampling methodology[J]. Atmospheric Environment, 2011,45(20):3343-3351.
|
[16] |
宋少洁,吴烨,蒋靖坤,等.北京市典型道路交通环境细颗粒物元素组成及分布特征[J]. 环境科学学报, 2012,32(1):66-73. Song S J, Wu Y, Jiang J K, et al. Characteristics of elements in size-resolved fine particles in a typical road traffic environment in Beijing[J]. Acta Scientiae Circumstantiae, 2012,32(1):66-73.
|
[17] |
Rogge W F, Medeiros P M, Simoneit B R T. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study[J]. Atmospheric Environment, 2007,41(37):8183-8204.
|
[18] |
李宁,姜昱聪,贾晓洋,等.土壤PM10和PM2.5组分中铬、砷和多环芳烃的累积及健康风险评估[J]. 生态环境学报, 2019,28(8):1700-1712. Li N, Jiang Y C, Jia X Y, et al. Accumulation characteristics and health risk assessment of Cr, As and PAHs in PM10 and PM2.5 fractions of soils[J]. Ecology and Environmental Sciences, 2019,28(8):1700-1712.
|
[19] |
张雯婷,王雪松,刘兆荣,等.贵阳建筑扬尘PM10排放及环境影响的模拟研究[J]. 北京大学学报(自然科学版), 2010,46(2):258-264. Zhang W T, Wang X S, Liu Z R, et al. Construction fugitive PM10emission and its influences on air quality in Guiyang[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2010,46(2):258-264.
|
[20] |
Wu Z Z, Zhang X L, Wu M. Mitigating construction dust pollution:state of the art and the way forward[J]. Journal of Cleaner Production, 2016,112(2):1658-1666.
|
[21] |
Chen S Y, Zhang X R, Lin J T, et al. Fugitive road dust PM2.5 emissions and their potential health impacts[J]. Environmental Science & Technology, 2019,53(14):8455-8465.
|
[22] |
田刚,李钢,闫宝林,等.施工扬尘空间扩散规律研究[J]. 环境科学, 2008,29(1):259-262. Tian G, Li G, Yan B L, et al. Spatial dispersion laws of fugitive dust from construction sites[J]. Environmental Science, 2019,40(4):1656-1663.
|
[23] |
王来福.天津市城市建筑工地与工业堆料场扬尘污染研究[D]. 天津:天津大学, 2017. Wang L F. Study on dust pollution of urban construction site and industrial stockyard in Tianjin city[D]. Tianjin:Tianjin University, 2017.
|
[24] |
Pardyjak E R, Speckart S O, Yin F, et al. Near source deposition of vehicle generated fugitive dust on vegetation and buildings:Model development and theory[J]. Atmospheric Environment, 2008,42(26):6442-6452.
|
[25] |
Thomaz E L, Vestena L R, Scharrón C E R. The effects of unpaved roads on suspended sediment concentration at varying spatial scales-a case study from Southern Brazil[J]. Water and Environment Journal, 2014,28(4):547-555.
|
[26] |
李培荣,肖天贵,王铭杨.基于风廓线雷达对成都地区典型持续性重污染天气的研究[J]. 环境科学学报, 2019,39(12):4174-4186. Li P R, Xiao T G, Wang M Y. Study on typical continuous heavily polluted weather in Chengdu area based on wind profiler radar[J]. Acta Scientiae Circumstantiae, 2019,39(12):4174-4186.
|
[27] |
中华人民共和国环境保护部.大气污染物无组织排放监测技术导则[EB/OL]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/-jcffbz/200103/-t20010301_67423.shtml. Ministry of Environmental Protection of the People's Republic of China.Technical guidelines for fugitive emission monitoring of air pollutants[EB/OL]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/-jcffbz/200103/t20010301_67423.shtml.
|
[28] |
田飞,伯鑫,薛晓达,等.基于复杂地形-气象场的二噁英污染物沉降研究[J]. 中国环境科学, 2019,39(4):1678-1686. Tian F, Bo X, Xue X D, et al. Study on settlement of dioxin pollutants under complex terrain-weather conditions[J]. China Environmental Science, 2019,39(4):1678-1686.
|
[29] |
伯鑫,王刚,温柔,等.京津冀地区火电企业的大气污染影响[J]. 中国环境科学, 2015,35(2):364-373. Bo X, Wang G, Wen R, et al. Air pollution effect of the thermal power plants in Beijing-Tianjin-Hebei region[J]. China Environmental Science, 2015,35(2):364-373.
|
[30] |
Amoatey P, Omidvarborna H, Affum H, et al. Performance of AERMOD and CALPUFF models on SO2 and NO2 emissions for future health risk assessment in Tema Metropolis[J]. Human and Ecological Risk Assessment:An International Journal, 2018,25(3):772-786.
|
[31] |
何飞雨,沈斯亮,陈赟,等.我国南方某填埋场作业面氨气释放和扩散规律分析[J]. 环境科学学报, 2018,38(9):3457-3466. He F Y, Shen S L, Chen Y, et al. Analysis of ammonia emission and diffusion at a working face on a municipal solid waste landfill in south of China[J]. Acta Scientiae Circumstantiae, 2018,38(9):3457-3466.
|
[32] |
崔慧玲.CALPUFF模式用于放射性核素不同尺度的迁移扩散研究[D]. 太原:太原理工大学, 2017. Cui H L. The study of radionuclides atmospheric transport based on CALPUFF[D]. Taiyuan:Tianjin University, 2017.
|
[33] |
赖锡柳,王颖,杨雪玲,等.AERMOD与CALPUFF模拟复杂地形空气质量的对比[J]. 兰州大学学报(自然科学版), 2017,53(6):792-798. Lai X L, Wang Y, Yang X L, et al. A comparative study of AERMOD and CALPUFF simulation of the air quality on a complex terrain[J]. Journal of Lanzhou University (Natural Sciences), 2017,53(6):792-798.
|
[34] |
Hao Y F, Xie S D. Optimal redistribution of an urban air quality monitoring network using atmospheric dispersion model and genetic algorithm[J]. Atmospheric Environment, 2018,177:222-233.
|
[35] |
朱好,张宏升,蔡旭晖,等.CALPUFF在复杂地形条件下的近场大气扩散模拟研究[J]. 北京大学学报, 2013,49(3):452-462. Zhu H, Zhang H S, Cai X H, et al. Using CALPUFF for near-field atmospheric dispersion simulation over complex terrain[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2013,49(3):452-462.
|
[36] |
中华人民共和国环境保护部.扬尘源颗粒物排放清单编制技术指南(试行)[EB/OL]. http://www.mee.gov.cn/ywdt/hjnews-/201501/t20150113_294091.shtml. Ministry of Environmental Protection of the People's Republic of China. Technical guidelines for fugitive emission monitoring of air pollutants[EB/OL]. http://www.mee.gov.cn/ywdt/hjnews/201501/t20150113_294091.shtml.
|
[37] |
宋丹林,黄凤霞,陈燕,等.成都市典型建筑工地扬尘污染特征研究[J]. 四川环境, 2019,38(2):69-74. Song D L, Huang F X, Chen Y, et al. Research on Construction Dust Pollution Characteristics in a Typical Construction Site in Chengdu[J]. Sichuan Environment, 2019,38(2):69-74.
|
[38] |
林方醒,苏浩,陈群,等.珠三角区域城市房建工程扬尘排放特征研究[J]. 广东土木与建筑, 2018,25(7):56-58. Lin F X, Su H, Chen Q, et al. Research on the emission characteristics of dust in building construction dust of cities in Pearl River Delta Region[J]. Guangdong Architecture Civil engineering, 2018,25(7):56-58.
|
[39] |
刘嘉明,狄育慧,梅源,等.西安市夜间土方工程施工扬尘排放特征分析[J]. 制冷与空调, 2019,33(3):332-336. Liu J M, Di Y H, Mei Y, et al. Analysis on the characteristics of dust emission from earthwork construction at night in Xi'an[J]. Refrigeration and air conditioning, 2019,33(3):332-336.
|
[40] |
梁珊,伏晴艳,刘启贞,等.上海市秋季典型建筑工地结构施工阶段扬尘污染特征[J]. 环境污染与防治, 2018,40(12):1394-1399. Liang S, Fu Q Y, Liu Q Z, et al.The pollution characterizations of fugitive dust of a typical construction site during the structure construction period in autumn in Shanghai[J]. Environmental Pollution & Control, 2018,40(12):1394-1399.
|
[41] |
Chalvatzaki E, Aleksandropoulou V, Glytsos T, et al. The effect of dust emissions from open storage piles to particle ambient concentration and human exposure[J]. Waste Management, 2012,32(12):2456-2468.
|
[1] |
MA Yi-ran, GAO Song, WANG Qiao-min, CUI Hu-xiong, WU Shi-jian, FU Qing-yan, DUAN Yu-seng, WU Jian, JIAO Zheng. Source profiles and impact of volatile organic compounds in the synthetic resin industry[J]. CHINA ENVIRONMENTAL SCIENCECE, 2020, 40(8): 3268-3274. |
|
|
|
|