|
|
Refined imaging of pH and O2 across the passivated soil-root micro-interfaces |
REN Jing-hua1, FAN Jian1, SUN Yu2, LIAO Qi-lin1, XU Wei-wei1, LIULing1, HAN Chao2, GU Xue-yuan3 |
arable, Ministry of Natural Resources, Geological Survey of Jiangsu Province, Nanjing 210018, China; 2. State Key Laboratory of Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; 3. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China |
|
|
Abstract Herein two self-established planar optode methods (PO) were successfully deployed to in situ, high-resolution investigate the fine-scale and simultaneous variations of micro-environmental conditions e.g. pH and O2 across the passivated soil-root interfaces. For the first time, our results quantitatively and directly revealed the high degrees of spatiotemporal heterogeneity of pH and O2 throughout the rhizosphere at the sub-mm scale. Significant differences (P<0.01) among three Cd treatments were observed. The addition of the attapulgite clays significant elevated the pH micro-environemnts, but had slight effects on the micro-distributions of O2 within the soil profiles. There was a visible and distinct range of 2~5mm surrounding the rice roots where pH values were generally decreased by 0.31~0.87 and O2 concentrations were increased to 58.56~82.01μmol/L. Notably higher rhizosphere acidification and O2 leakage always occurred locally around the basal roots. The higher abilities of rhizosphere acidification and O2 leakage within the passivated soil-root micro interfaces would potentially promote the reactivation and root uptake of passivated Cd.
|
Received: 24 August 2022
|
|
|
|
|
[1] |
朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J]. 环境科学学报, 2003,23(2):205-210. Zhu Y G. Micro-interfacial processes in soil-plant systems and their environmental impacts[J]. Acta Scientiae Circumstantiae, 2003,23(2):205-210.
|
[2] |
范成新.湖泊沉积物-水界面研究进展与展望[J]. 湖泊科学, 2019, (5):1191-1218. Fan C X. Advances and prospect in sediment-water interface of lakes:A review[J]. Journal of Lake Science, 2019,(5):1191-1218.
|
[3] |
韩 君,梁学峰,徐应明,等.黏土矿物原位修复镉污染稻田及其对土壤氮磷和酶活性的影响[J]. 环境科学学报, 2014,34(11):2853-2860. Han J, Liang X, Xu Y, et al. In-situ remediation of Cd-polluted paddy soil by clay minerals and their effects on nitrogen, phosphorus and enzymatic activities[J]. Acta Scientiae Circumstantiae, 34(11):2853-2860.
|
[4] |
Drewniak L, Skłodowska A, Manecki M, et al. Solubilization of Pb-bearing apatite Pb5(PO4)3Cl by bacteria isolated from polluted environment[J]. Chemosphere, 2017,171:302-307.
|
[5] |
蔡春婷,汤克丽,许旭萍,等.镉铅复合污染下根表铁膜氧化胶膜厚度对美洲商陆富集镉的影响[J]. 环境科学学报, 2017,37(1):298-307. Cai C T Tang K L, Xu X P, et al. Effects of iron-manganese plaque thickness on Cd accumulation in Phytolacca americana under Cd-Pb combined stress[J]. Acta Scientiae Circumstantiae, 2017,37(1):298-307.
|
[6] |
Xu D Y, Gao B, Peng W, et al, Application of DGT/DIFS and geochemical baseline to assess Cd release risk in reservoir riparian soils, China[J]. Science of the Total Environment, 2019,646:1546-1553.
|
[7] |
李奕林.水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 2012,32(7):2066-2074. Li Y L. Relationship among rice root aerechyma, root radial oxygen loss and rhizosphere nitrification[J]. Acta Ecologica Sinica, 2012, 32(7):2066-2074.
|
[8] |
Stockdale A, Davison W, Zhang H. Micro-scale biogeochemical heterogeneity in sediments:A review of available technology and observed evidence[J]. Earth-Science Reviews, 2009,92(1):81-97.
|
[9] |
Larsen, M, Santner J, Oburger E, et al. O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes[J]. Plant and Soil, 2015,390(1/2):279-292.
|
[10] |
胡 璇,韩 超,方 文,等.平板光极技术的基本原理及其在环境中的应用[J]. 环境化学, 2019,38(4):861-875. Hu X, Han C, Fang W, et al. Principles and environmental applications of planar optode technique[J]. Environmental Chemistry, 2019,38(4):861-875.
|
[11] |
Han C, Ren J H, Tang H, et al. Quantitative imaging of radial oxygen loss from Valisneria spiralis roots with a fluorescent planar optode[J]. Science of the Total Environment, 2016,569:1232-1240.
|
[12] |
Li Z, Jia M Y, Wu L H, et al. Changes in metal availability, desorption kinetics and speciation in contaminated soils during repeated phytoextraction with the Zn/Cd hyperaccumulator Sedum plumbizincicola [J]. Environmental Pollution, 2016,209:123-131.
|
[13] |
Sun Y B, Li Y, Xu Y M, et al. In situ stabilization remediation of cadmium (Cd) and lead (Pb)co-contaminated paddy soil using bentonite[J]. Applied Clay Science, 2015,105-106:200-206.
|
[14] |
徐 奕,李剑睿,黄青青,等.坡缕石钝化与喷施叶面硅肥联合对水稻吸收累积镉效应影响研究[J]. 农业环境科学学报, 2016,35(9):1633-1641. Xu Y, Li J, Huang Q, et al. Effect of palygorskite immobilization combined with foliar silicon fertilizer application on Cd accumulation in rice[J]. Journal of Agro-Environment Science, 2016,35(9):1633-1641.
|
[15] |
Liang X F, Li N, He L Z, et al. Inhibition of Cd accumulation in winter wheat (Triticum aestivum L.) grown in alkaline soil using mercapto-modified attapulgite[J].Science of the Total Environment, 2019,688:818-826.
|
[16] |
姚 磊,韩 超,丁士明等.霍甫水丝蚓扰动下沉积物-水界面pH值的二维、高分辨分布特征[J]. 湖泊科学, 2016,28(1):156-162. Yao L, Han C, Ding S, et al. Two dimensional, high resolution distribution of pH values at sediment-water interface under bioturbation of Limnodrilus hoffmeisteri[J]. Journal of Lake Science, 2016,28(1):156-162.
|
[17] |
Han C, Ren J H, Williams P N, et al. High-resolution imaging of rhizosphere O2 dynamics in Potamogeton crispus:effects of light, temperature and O2content in overlying water[J]. Plant Soil, 2019,441 (1/2):613-627.
|
[18] |
Santner J, Larsen M, Kreuzeder A, et al. Two decades of chemical imaging of solutes in sediments and soils-a review[J]. Analytica Chimica Acta, 2015,878:9-42.
|
[19] |
Brodersen K E, Koren K, Mosshammer M, et al. Seagrass-mediated phosphorus and iron solubilization in tropical sediments[J]. Environment Science & Technology, 2017,51:14155-14163.
|
[20] |
Williams P N, Santner J, Larsen M, et al. Localized flux maxima of arsenic, lead, and iron around root apices in flooded lowland rice[J]. Environmental Science &Technology, 2014,48(15):8498-8506.
|
[21] |
Yin D X, Fang W, Guan D X, et al. Localized intensification of Arsenic release within the emergent rice rhizosphere[J]. Environment Science & Technology, 2020,54:3138-3147.
|
[22] |
Lenzewski N, Mueller P, Meier R J, et al. Dynamics of oxygen and carbon dioxide in rhizospheres of Lobelia dortmanna-a planar optode study of belowground gas exchange between plants and sediment[J]. New Phytologist, 2018,218:131-141.
|
[23] |
Hoefer C, Santner J, Borisov S M, et al. Integrating chemical imaging of cationic trace metal solutes and pH into a single hydrogel layer[J]. Analytica Chimica Acta, 2017,950:88-97.
|
[24] |
Razavi B S, Zarebanadkouki M, Blagodatskaya E, et al. Rhizosphere shape of lentil and maize:spatial distribution of enzyme activities[J]. Soil Biology & Biochemistry, 2016,96:229-237.
|
[25] |
任静华,廖启林,范 健,等.凹凸棒粘土对镉污染农田的原位钝化修复效果研究[J]. 生态环境学报, 2017,26(12):2161-2168. Ren J H, Liao Q L, Fan J, et al. Effect of in-situ stabilizing remediation of Cd-polluted soil by attapulgite[J]. Ecology and Environmental Sciences, 26(12):2161-2168.
|
[26] |
陈展祥,陈传胜,陈卫平,等.凹凸棒石及其改性材料对土壤镉生物有效性的影响与机制[J]. 环境科学, 2018,39(10):4744-4751. Chen Z X, Chen C S, Chen W P, et al. Effect and mechanism of attapulgite and its modified materials on bioavailability of cadmium in soil[J]. Environmental Science, 2018,39(10):4744-4751.
|
[27] |
孙国红,李剑睿,梁学峰,等.钝化修复对不同水稻品种镉累积效应及土壤特性的影响[J]. 灌溉排水学报, 2017,36(2):25-31. Sun G H, Li J R, Liang X F, et al. Effects of immobilization remediation of cadmium contaminated paddy soil on cadmium accumulation and soil properties in different rice varieties[J]. Journal of Irrigation and Drainage, 2017,36(2):25-31.
|
[28] |
Sun X, Li Z, Wu LH, et al. Root-induced soil acidification and cadmium mobilization in the rhizosphere of Sedum plumbizincicola:evidence from a high-resolution imaging study[J]. Plant and Soil, 2019,436(1/2):267-282.
|
[29] |
Blossfeld S, Perriguey J, Sterckeman T, et al. Rhizosphere pH dynamics in trace-metal contaminated soils, monitored with planar pH optodes[J]. Plant and Soil, 2010,330(1/2):173-184.
|
[30] |
刘立军,常二华,熊溢伟,等.水稻根系分泌物有机酸、多胺与稻米蒸煮品质及蛋白质组分的关系[J]. 扬州大学学报(农业与生命科学版), 2014,35(3):48-53. Liu L J, Chang E H, Xiong Y W, et al. Relationship of organic acid and polyamines exudated from roots with grain cooking quality and protein components in rice[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2014,35(3):48-53.
|
[31] |
吴义茜,宋常志,徐应明,等.巯基化凹凸棒石对水稻土中镉钝化效应的动态变化特征[J]. 环境科学学报, 2021,41(9):3792-3802. Wu Y Q, Song C Z, Xu Y M, et al. Dynamic characteristic of the immobilization effect of thiolated attapulgite on cadmium in paddy soil[J]. Acta Scientiae Circumstantiae, 2021,41(9):3792-3802.
|
[32] |
Rudolph-Mohr N, Vontobel P, Oswald S E, et al. A multi-imaging approach to study the root-soil interface[J]. Annals of Botany, 2014, 114:1779-1787.
|
[33] |
唐 皓.基于平面光电极法研究湖泊沉积物界面溶解氧二维、高分辨分布特征[D]. 合肥:安徽师范大学, 2017. Tang H. Application of planar optode on high-resolution imaging of dissolved oxygen across the sediment interfaces[D]. Hefei, Anhui Normal University, 2017.
|
[34] |
唐 杰,徐浩洋,王昌全,等.镉胁迫对3个水稻品种(系)根系生长及有机酸和氨基酸分泌的影响[J]. 湖南农业大学学报(自然科学版), 2016,42(2):118-124. Tang J, Xu H X, Wang C Q, et al. Effect of cadmium stress on root growth and organic acids and amino acid secretion of three rice varieties[J]. Journal of Hunan Agricultural University (Natural Sciences), 2016,42(2):118-124.
|
[35] |
Ye T, Wang Y, Feng Y, et al. Physiological and metabolomic responses of bermudagrass (Cynodon Dactylon) to alkali stress[J]. Physiologia Plantarum, 2021,171(1):22-33.
|
[36] |
Mei X Q,Wong M H, Yang Y, et al. The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere[J]. Environmental Pollution, 2012,165:109-117.
|
|
|
|