|
|
Effects of oleic acid on the transformation of schwertmannite and Cr migration |
YU Sheng-hui, FENG Xin-yi, WANG Yi-yuan, ZHANG Lei, GUO Jun-kang |
School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China |
|
|
Abstract Schwertmannite (Sch) was first synthesized via a rapid chemical method, and the effects of oleic acid concentration and pH on the transformation of Sch minerals and migration of Cr were investigated systematically. The results indicate that the transformation of Sch was greatly influenced by oleic acid via the inhibition of dissolution-transformation processes, and Sch remained at the primary stage after the transformation of 150days. Meanwhile, the stability of Sch was strengthened by the doping of Cr. Moreover, the Sch transformation rate increased with pH. In addition, the migration of Cr in Sch was heavily influenced by the dissolution-transformation processes. The release of Cr into the aquatic environment from Sch mineral occurred at low pH, whereas the migration of Cr into goethite took place in high pH environments.
|
Received: 08 June 2023
|
|
|
|
|
[1] |
Tomiyama S, Igarashi T. The potential threat of mine drainage to groundwater resources [J]. Current Opinion in Environmental Science & Health, 2022,27:100347.
|
[2] |
Ren K, Zeng J, Liang J, et al. Impacts of acid mine drainage on karst aquifers:Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes [J]. Science of the Total Environment, 2021,761:143223.
|
[3] |
Ighalo J O, Kurniawan S B, Iwuozor K O, et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD) [J]. Process Safety and Environmental Protection, 2022,157:37-58.
|
[4] |
Smith A M L, Hudson-Edwards K A, Dubbin W E, et al. Dissolution of jarosite [KFe3(SO4)2(OH)6] at pH 2and 8:Insights from batch experiments and computational modelling [J]. Geochimica et Cosmochimica Acta, 2006,70(3):608-621.
|
[5] |
Song Y, Guo Z, Wang R, et al. A novel approach for treating acid mine drainage by forming schwertmannite driven by a combination of biooxidation and electroreduction before lime neutralization [J]. Water Research, 2022,221:118748.
|
[6] |
Bigham J M, Nordstrom D K. Iron and aluminum hydroxysulfates from acid sulfate waters [J]. Reviews in Mineralogy and Geochemistry, 2000,40(1):351-403.
|
[7] |
Tabelin C B, Corpuz R D, Igarashi T, et al. Acid mine drainage formation and arsenic mobility under strongly acidic conditions:Importance of soluble phases, iron oxyhydroxides/oxides and nature of oxidation layer on pyrite [J]. Journal of Hazardous Materials, 2020,399:122844.
|
[8] |
Xiong H, Hu D, Shi K, et al. Adsorptive removal of arsenic ions from contaminated water using low-cost schwertmannites and akaganéites [J]. Materials Chemistry and Physics, 2023,297:127411.
|
[9] |
Schoepfer V A, Burton E D. Schwertmannite:A review of its occurrence, formation, structure, stability and interactions with oxyanions [J]. Earth-Science Reviews, 2021,221:103811.
|
[10] |
Paikaray S, Peiffer S. Dissolution kinetics of sulfate from schwertmannite under variable pH conditions [J]. Mine Water and the Environment, 2010,29(4):263-269.
|
[11] |
Antelo J, Fiol S, Carabante I, et al. Stability of naturally occurring AMD-schwertmannite in the presence of arsenic and reducing agents [J]. Journal of Geochemical Exploration, 2021,220:106677.
|
[12] |
Wang Y, Gao M, Huang W, et al. Effects of extreme pH conditions on the stability of As (V)-bearing schwertmannite [J]. Chemosphere, 2020,251:126427.
|
[13] |
Jin X, Guo C, Li X, et al. Arsenic partitioning during schwertmannite dissolution and recrystallization in the presence of Fe (II) and oxalic acid [J]. ACS Earth and Space Chemistry, 2021,5(5):1058-1070.
|
[14] |
Bigham J M, Schwertmann U, Traina S J, et al. Schwertmannite and the chemical modeling of iron in acid sulfate waters [J]. Geochimica et Cosmochimica Acta, 1996,60(12):2111-2121.
|
[15] |
Jönsson J, Persson P, Sjöberg S, et al. Schwertmannite precipitated from acid mine drainage:phase transformation, sulphate release and surface properties [J]. Applied Geochemistry, 2005,20(1):179-191.
|
[16] |
Burton E D, Bush R T, Sullivan L A, et al. Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands [J]. Geochimica et Cosmochimica Acta, 2007,71(18):4456-4473.
|
[17] |
HoungAloune S, Hiroyoshi N, Ito M. Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions [J]. Minerals Engineering, 2015,74:51-59.
|
[18] |
Burton E D, Bush R T, Sullivan L A, et al. Schwertmannite transformation to goethite via the Fe(II) pathway:Reaction rates and implications for iron-sulfide formation [J]. Geochimica et Cosmochimica Acta, 2008,72(18):4551-4564.
|
[19] |
Wang H, Bigham J M, Tuovinen O H. Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms [J]. Materials Science and Engineering:C, 2006,26(4):588-592.
|
[20] |
Xie Y, Ye H, Wen Z, et al. Sulfide-induced repartition of chromium associated with schwertmannite in acid mine drainage:Impacts and mechanisms [J]. Science of the Total Environment, 2022,848:157863.
|
[21] |
Antelo J, Fiol S, Carabante I, et al. Stability of naturally occurring AMD-schwertmannite in the presence of arsenic and reducing agents [J]. Journal of Geochemical Exploration, 2021,220:106677.
|
[22] |
Xie Y Y, Lu G N, Ye H, et al. Role of dissolved organic matter in the release of chromium from schwertmannite:kinetics, repartition, and mechanisms [J]. Journal of Environmental Quality, 2017,46(5):1088-1097.
|
[23] |
Xie Y Y, Lu G N, Ye H, et al. Fulvic acid induced the liberation of chromium from CrO42−-substituted schwertmannite [J]. Chemical Geology, 2017,475:52-61.
|
[24] |
Zhang J, Li W, Li Y, et al. Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As (III) and the release of adsorbed As (III) [J]. Environmental Pollution, 2019,245:711-718.
|
[25] |
Yao Q, Guo C, Li X, et al. Synergy of oxalic acid and sunlight triggered Cr (III)-bearing Schwertmannite transformation:Reaction mechanism, Cr and C spatial distribution and speciation on the nano scale [J]. Geochimica et Cosmochimica Acta, 2022,329:70-86.
|
[26] |
韩张雄,倪天阳,武俊杰,等.典型金属矿山选矿药剂与重金属污染综述[J]. 应用化工, 2017,46(7):1387-1390. Han Z X, Ni T Y, Wu J J, et al. A review of contamination of heavy metal and reagents for beneficiation in metal mine environment [J]. Applied Chemical Industry, 2017,46(7):1387-1390.
|
[27] |
郝艳.丁铵黑药在土壤中的环境行为研究[D]. 广州:暨南大学, 2012. Hao Y. The study on environmental behavior of ammonium butyl aerofloat in soils [D]. Guangzhou:Jinan University, 2012.
|
[28] |
艾光华,魏宗武.矿山选矿药剂对生态环境的污染与防治探讨[J]. 新疆环境保护, 2008,30(2):31-34. Ai G H, Wei Z W. Study on flotation reagents prevention and control of ecological environmental pollution [J]. Environmental Protection of Xinjiang, 2008,30(2):31-34.
|
[29] |
马永明.有色金属选矿厂给排水系统设计构建及探析[J]. 有色设备, 2022,36(5):66-70. Ma Y M. Design and construction of water supply and drainage system in non-ferrous metal concentrator [J]. Nonferrous Metallurgical Equipment, 2022,36(5):66-70.
|
[30] |
栾和林,陈彩霞,田野,等.复合污染与尾矿区重金属释放和迁移[J]. 有色金属, 2006,4:124-127. Luan H L, Chen C X, Tian Y, et al. Relationship of complex pollution to heavy metals release and migration from floatation tailings dam [J]. Nonferrous Metals Engineering, 2006,4:124-127.
|
[31] |
于生慧,王艳,王翼远,等.乙基黄药对施氏矿物吸附Cr(Ⅵ)的影响研究[J]. 环境科学学报, 2022,42(12):61-69. Yu S H, Wang Y, Wang Y Y, et al. Effect of ethyl xanthate on Cr(VI) adsorption by schwertmannite mineral [J]. Acta Scientiae Circumstantiae, 2022,42(12):61-69.
|
[32] |
杜飞飞,吕宪俊,孙丽君.油酸低温浮选技术综述[J]. 现代矿业, 2010,(1):31-34. Du F F, Lv X J, Sun L J. Overview on low temperature flotation technology of oleic acid [J]. Modern Mining, 2010,(1):31-34.
|
[33] |
张汉泉,许鑫,肖林波,等.油酸钠在细粒白云石表面吸附特性研究[J]. 矿冶工程, 2021,41(2):33-38. Zhang H Q, Xu X, Xiao L B, et al. Adsorption characteristics of sodium oleate on fine dolomite [J]. Mining and Metallurgical Engineering, 2021,41(2):33-38.
|
[34] |
王成行,邱显扬,胡真,等.油酸钠对氟碳铈矿的捕收作用机理研究[J]. 稀土, 2013,34(6):24-30. Wang C X, Qiu X Y, Hu Z, et al. Study on the flotation mechanism of bastnaesite by sodium oleate [J]. Chinese Rare Earths, 2013,34(6):24-30.
|
[35] |
汤家焰,何嘉宁,鲁向锦,等.油酸钠体系中铈离子对萤石和方解石浮选的影响[J]. 矿冶工程, 2023,43(2):48-51. Tang J Y, He J N, Lu X J, et al. Effect of Ce3+ in sodium oleate system on flotation of fluorite and calcite [J]. Mining and Metallurgical Engineering, 2023,43(2):48-51.
|
[36] |
陈远道,卢毅屏,王凤玲,等.改善羧酸类捕收剂浮选性能的方法[J]. 国外金属矿选矿, 2003,(4):4-7. Chen Y D, Lu Y P, Wang F L, et al. Methods for improving the flotation performance of carboxylic acid collectors [J]. Metallic Ore Dressing Abroad, 2003,(4):4-7.
|
[37] |
Regenspurg S, Brand A, Peiffer S. Formation and stability of schwertmannite in acidic mining lakes [J]. Geochimica et Cosmochimica Acta, 2004,68(6):1185-1197.
|
[38] |
牟海燕.施氏矿物对水体中As(Ⅴ)和Cr(Ⅵ)同步去除试验研究[D]. 重庆:重庆大学, 2015. Mou H Y. An experimental study of simultaneous removal of aqueous As(V) and Cr(VI) by schwertmannite [D]. Chongqing:Chongqing University, 2015.
|
[39] |
Liu Y Y, Mou H Y, Chen L, et al. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material:Environmental factors and effectiveness [J]. Journal of Hazardous Materials, 2015,298:83-90.
|
[40] |
Cutting R S, Coker V S, Telling N D, et al. Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens [J]. Environmental Science & Technology, 2012,46(22):12591-12599.
|
[41] |
Regenspurg S, Peiffer S. Arsenate and chromate incorporation in schwertmannite [J]. Applied Geochemistry, 2005,20(6):1226-1239.
|
[42] |
何楚城,李晓飞,祝紫莹,等.柠檬酸-施氏矿物复合体对Cd和Pb的吸附研究[J]. 环境科学学报, 2021,41(12):4793-4802. He C C, Li X F, Zhu Z Y, et al. Cd,Pb adsorption on citric acid-Schwertmannite complexes [J]. Acta Scientiae Circumstantiae, 2021,41(12):4793-4802.
|
[43] |
Park J H, Han Y S, Ahn J S. Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream [J]. Water Research, 2016,106:295-303.
|
[44] |
Cai J, Deng J, Wen S, et al. Surface modification and flotation improvement of ilmenite by using sodium hypochlorite as oxidant and activator [J]. Journal of Materials Research and Technology, 2020, 9(3):3368-3377.
|
[45] |
Zhong K, Cui L. Influence of Fe2+ ions of ilmenite on its flotability [J]. International Journal of Mineral Processing, 1987,20(3/4):253-265.
|
[46] |
Barham R J. Schwertmannite:A unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate [J]. Journal of Materials Research, 1997,12(10):2751-2758.
|
[47] |
Zhang S L, Jia S Y, Yu B, et al. Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization [J]. Chemical Geology, 2016,420:270-279.
|
[48] |
陈梅芹.硫酸根在金属硫化物矿区AMD污染河流中的迁移过程及其作用机制[D]. 广州:华南理工大学, 2015. Chen M Q. Sulfate migration and its mechanism in a river affected by acid mine drainage in metal sulfide mining Area [D]. Guangzhou:South China University of Technology, 2015.
|
[49] |
Regenspurg S. Characterisation of schwertmannite-geochemical interactions with arsenate and chromate and significance in sediments of lignite opencast lakes [D]. Bayreuth:Universität Bayreuth, 2002.
|
[50] |
Boily J F, Gassman P L, Peretyazhko T, et al. FTIR spectral components of schwertmannite [J]. Environmental Science & Technology, 2010,44(4):1185-1190.
|
[51] |
Ramachandran E, Baskaran K, Natarajan S. XRD, thermal, FTIR and SEM studies on gel grown γ-glycine crystals [J]. Crystal Research and Technology, 2007,42(1):73-77.
|
[52] |
Cornell R M, Schwertmann U. The iron oxides:structure, properties, reactions, occurrences, and uses [M]. Weinheim:Wiley-vch, 2003.
|
[53] |
Antelo J, Fiol S, Gondar D, et al. Cu(II) incorporation to schwertmannite:Effect on stability and reactivity under AMD conditions [J]. Geochimica et Cosmochimica Acta, 2013,119:149-163.
|
[54] |
杨成方.金属硫化物矿区稻田土壤中硫素的迁移转化及次生硫酸盐矿物中重金属的溶出机制[D]. 广州:华南理工大学, 2016. Yang C F. Migration and transformation of sulfur in paddy soil and dissolution of mechanism of heavy metal in secondary iron sulfate mineral in metal sulfide mine area [D]. Guangzhou:South China University of Technology, 2016.
|
[55] |
Bonnissel-Gissinger P, Alnot M, Ehrhardt J J, et al. Surface oxidation of pyrite as a function of pH [J]. Environmental Science & Technology, 1998,32(19):2839-2845.
|
[56] |
Zhu J, Chen F, Gan M. Controllable biosynthesis of nanoscale schwertmannite and the application in heavy metal effective removal [J]. Applied Surface Science, 2020,529:147012.
|
|
|
|