|
|
Effects of soil moisture on available arsenic and alkaline phosphatase activity in paddy soil |
XIE Wei1,2, TAN Xiang-ping1, TIAN Hai-xia1, WANG Zi-quan1, YANG Rui1, WEI Ge-hong3, HE Wen-xiang1,2 |
1. College of Resources and Environment, Northwest A & F University, Yangling 712100, China;
2. Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling 712100, China;
3. College of Life Sciences, Northwest A & F University, Yangling 712100, China |
|
|
Abstract The relationship of available arsenic and soil alkaline phosphatase activity at different soil moistures (35%, 65% and 110% of water holding capacity) was studied by an indoor simulated experiment. The results showed that available arsenic content increased after arsenic pollution and declined with aging until held steady after 15days. Flooding reduced the available arsenic content and soil alkaline phosphatase activity. The relationship of soil enzymatic activities (U) and arsenic concentration (C) was described well by the model U=A/(1+B×C), which indicated that soil alkaline phosphatase activity could be a good predictor for arsenic pollution in paddy soil under different soil moistures. Ecological dose 10% (ED10) of total and available arsenic were 67mg/kg and 11mg/kg in paddy soil, respectively. The results of this study suggested that it was an efficient way to appropriately change the soil moisture to relieve the toxicity of arsenic contamination in paddy soil.
|
Received: 18 January 2016
|
|
|
|
|
[1] |
Han F X, Su Y, Monts D L, et al. Assessment of global industrial-age anthropogenic arsenic contamination[J]. Naturwissenschaften, 2003,90(9):395-401.
|
[2] |
Stone M M, Plante A F. Changes in phosphatase kinetics with soil depth across a variable tropical landscape[J]. Soil Biology and Biochemistry, 2014,71(3):61-67.
|
[3] |
Charlatchka R, Cambier P. Influence of reducing conditions on solubility of trace metals in contaminated soils[J]. Water, Air, and Soil Pollution, 2000,118(1/2):143-168.
|
[4] |
吴锡,许丽英,张雪霞,等.缺氧条件下土壤砷的形态转化与环境行为研究[J]. 环境科学, 2012,33(1):273-27.
|
[5] |
张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响[J]. 土壤学报, 2002,39(1):23-28.
|
[6] |
王钊,崔江慧,陈正,等.淹水-控温模式下砷污染水稻土溶液中砷形态的变化[J]. 应用生态学报, 2013,24(5):1415-1422.
|
[7] |
龙水波,曾敏,周航,等.不同水分管理模式对水稻吸收土壤砷的影响[J]. 环境科学学报, 2014,34(4):1003-1008.
|
[8] |
Speir T W, Kettles H A, Parshotam A, et al. Simple kinetic approach to determine the toxicity of As[V] to soil biological properties[J]. Soil Biology and Biochemistry, 1999,31(5):705-713.
|
[9] |
Lorenz N, Hintemann T, Kramarewa T, et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure[J]. Soil Biology and Biochemistry, 2006,38:1430-1437.
|
[10] |
王紫泉,黎惠智,窦凯歌,等.不同价态砷的土壤碱性磷酸酶效应研究[J]. 西北农林科技大学学报:自然科学版, 2013,41(10): 185-192.
|
[11] |
谢思琴,顾宗濂,吴留松.砷、镉、铅对土壤酶活性的影响[J]. 环境科学, 1987,(1).
|
[12] |
鲍士旦.土壤农化分析[M]. 北京:中国农业出版社, 2000.
|
[13] |
Woolson E A, Axley J H, Kearney P C. Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.)[J]. Soil Science Society of America Journal, 1971,35(1):101-105.
|
[14] |
关松荫.土壤酶及其研究方法[M]. 北京:农业出版社, 1987.
|
[15] |
薛培英,刘文菊,刘会玲,等.中轻度砷污染土壤-水稻体系中砷迁移行为研究[J]. 土壤学报, 2010,47(5):872-879.
|
[16] |
Lessard I, Sauvé S, Deschênes L. Toxicity response of a new enzyme-based functional diversity methodology for Zn-contaminated field-collected soils[J]. Soil Biology and Biochemistry, 2014,71:87-94.
|
[17] |
Doelman P, Haanstra L. Short and long term effects of heavy metals on phosphatase activity in soils: an ecological dose-response model approach[J]. Biology and Fertility of Soils, 1989, 8(3):235-241.
|
[18] |
刘岳燕.水分条件与水稻土壤微生物生物量活性及多样性的关系研究[D]. 杭州:浙江大学, 2009.
|
[19] |
杜瑞英,唐明灯,艾绍英,等.含水量对Cd污染菜地土壤中微生物多样性的影响[J]. 安全与环境学报, 2013,13(2):1-4.
|
[20] |
Almaroai Y A, Usman A R, Ahmad M, et al. Role of chelating agents on release kinetics of metals and their uptake by maize from chromated copper arsenate-contaminated soil[J]. Environmental Technology, 2013,34(6):747-755.
|
[21] |
Aringhieri R, Carrai P, Petruzzelli G. Kinetics of Cu2+ and Cd2+ absorption by an Italian soil[J]. Soil Science, 1985,139(3): 197-204.
|
[22] |
卢聪,李青青,罗启仕,等.场地土壤中有效态砷的稳定化处理及机理研究[J]. 中国环境科学, 2013,33(2):298-304.
|
[23] |
Gambrell R P. Trace and toxic metals in wetlands-a review[J]. Journal of Environmental Quality, 1994,23(5):883-891.
|
[24] |
唐冰培,杨世杰,王代长,等.硫素对氧化还原条件下水稻土氧化铁和砷形态影响[J]. 环境科学, 2014,35(10):3851-3861.
|
[25] |
何振立.污染及有益元素的土壤化学平衡[M]. 北京:中国环境科学出版社, 1998.
|
[26] |
Zheng S A, Zhang M K. Effect of moisture regime on the redistribution of heavy metals in paddy soil[J]. Journal of Environmental Sciences, 2011,23(3):434-443.
|
[27] |
Allende K L, McCarthy D T, Fletcher T D. The influence of media type on removal of arsenic, iron and boron from acidic wastewater in horizontal flow wetland microcosms planted with Phragmites australis[J]. Chemical Engineering Journal, 2014,246: 217-228.
|
[28] |
Fendorf S, La Force M J, Li G. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead[J]. Journal of Environmental Quality, 2004,33(6):2049-2055.
|
[29] |
刘斌,赵阿娟,杨虹琦,等.外源砷在3类土壤转化形态及其烟株中的分布[J]. 中国农学通报, 2013,29(13):100-105.
|
[30] |
苗金燕,何峰,魏世强,等.紫色土外源砷的形态分配与化学、生物有效性[J]. 应用生态学报, 2005,16(5):899-902.
|
[31] |
Lorenz N, Hintemann T, Kramarewa T, et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure[J]. Soil Biology and Biochemistry, 2006,38(6):1430-1437.
|
[32] |
黄瑞卿,王果,汤榕雁,等.酸性土壤有效砷提取方法研究[J]. 农业环境科学学报, 2005,24(3):610-615.
|
[33] |
和文祥,朱铭莪,张一平.土壤酶与重金属关系的研究现状[J]. 土壤与环境, 2000,9(2):139-142.
|
|
|
|