|
|
Chemical forms and risk assessment of heavy metals in soils around a typical coal-fired power plant located in the mountainous area |
FAN Ming-yi1, YANG Hao1,2, HUANG Xian-fei1,3, CAO Ren-sheng1, ZHANG Ze-dong1,2, HU Ji-wei1,2, QIN Fan-xin1 |
1. Guizhou Provincial Key Laboratory of Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China;
2. Institute of South China Karst, Guizhou Normal University, Guiyang 550001, China;
3. College of Forestry, Guizhou University, Guiyang 550025, China |
|
|
Abstract In order to investigate chemical forms of heavy metals in soil around the power plant located in Jinsha County, Bijie City, thirty-two surface soil samples were collected and analyzed using the modified Community Bureau of Reference (BCR) sequential extraction procedure. The risks of the heavy metals were evaluated using the potential ecological risk index proposed by Hakanson, the modified grey clustering, and risk assessment code (RAC). The results obtained showed that some differences were found in the spatial distributions of the heavy metals, and the concentrations of all heavy metals (except for Cd and Cr) were higher than the background values in soils from Guizhou. The majority of the heavy metals were primarily kept in residual fractions, while Cd existed mainly in acid soluble and reducible fractions. The results of correlation analysis showed that the correlations among Hg, As, Cd and Ni were significantly positive, while the correlations of Pb and Zn with the other heavy metals were weak. The results from potential ecological risk assessment indicated that the order of ecological risk for the seven heavy metals was Cd > Hg > As > Cu > Pb > Zn > Cr. The average ecological risk index (RI) was 129.72, suggesting a medium ecological risk to local ecological system. The results of modified grey clustering method showed that the pollution level in the west of the power plant was obviously higher than that in the east, and Hg and Cd were the main pollutants. Based on the analysis with RAC method, Cd was of medium risk to the environment (18.17%). Accordingly, Cr and Zn posed low risk, whereas Hg, Pb, As and Cu posed extremely low risk to the environment. In summary, surface soil around the coal-fired power plant was polluted to different degrees by heavy metals, and special attention should be paid to the treatment of Hg and Cd pollution.
|
Received: 12 January 2016
|
|
|
|
|
[1] |
黄先飞,秦樊鑫,胡继伟.重金属污染与化学形态研究进展[J]. 微量元素与健康研究, 2008,25(1):48-51.
|
[2] |
雷国建,陈志良,刘千钧,等.广州郊区土壤重金属污染程度及潜在生态危害评价[J]. 中国环境科学, 2013,33(S1):49-53.
|
[3] |
谢小进,康建成,闫国东,等.黄浦江中上游地区农用土壤重金属含量特征分析[J]. 中国环境科学, 2010,30(8):1110-1117.
|
[4] |
梅凡民,徐朝友.西安市大气降尘中Cu、Pb、Zn、Ni的化学形态及生物有效性--以燃煤电厂、生活垃圾电厂、产业开发区和建材商业区为例[J]. 安全与环境学报, 2012,12(1):130-134.
|
[5] |
海米提·依米提,祖皮艳木·买买提,李建涛,等.焉耆盆地土壤重金属的污染及潜在生态风险评价[J]. 中国环境科学, 2014, 34(6):1523-1530.
|
[6] |
Charleswirth S M, Lees J A. Particulate-associated heavy metals in the urban environment: Their transport from source to deposit, Coventry, UK[J]. Chemosphere, 1999,39(5):833-848.
|
[7] |
刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J]. 环境科学, 1996,17(1):89-92.
|
[8] |
王凌青,卢新卫,王利军,等.宝鸡燃煤电厂周围土壤环境Hg污染及其评价[J]. 土壤通报, 2007,38(3):622-624.
|
[9] |
方凤满,杨丁,汪琳琳,等.芜湖燃煤电厂周边土壤中砷汞的分布特征研究[J]. 水土保持学报, 2010,24(1):109-113.
|
[10] |
Sengar C B S, Soni D K, Aggarwal A L.燃煤热电厂产生的汞在周围大气、土壤和植物中的分布及其影响[J]. 能源环境保护, 1993,1(7):61-62.
|
[11] |
Keegan T J, Farago M E, Thornton I, et al. Dispersion of As and selected heavy metals around a coal burning power station in central Slovakia[J]. Science of the Total Environment, 2006, 358:61-71.
|
[12] |
范拴喜,甘卓婷,李美娟,等.土壤重金属污染评价方法进展[J]. 中国农学通报, 2010,26(17):310-315.
|
[13] |
窦磊,周永章,王旭日,等.针对土壤重金属污染评价的模糊数学模型的改进及应用[J]. 土壤通报, 2007,38(1):101-105.
|
[14] |
HJ/T166-2004土壤环境监测技术规范[S].
|
[15] |
Yang H, Hu J W, Huang X F, et al. Risk assessment of heavy metals pollution for Rosa sterilis and soil from planting bases located in karst areas of Guizhou province[J]. Applied Mechanics and Materials, 2015,700:475-481.
|
[16] |
鲁如坤.土壤农业化学分析方法.[M] 北京:中国农业科技出版社, 1999.
|
[17] |
罗国兵.冷原子吸收光谱法测定污水中总汞的两种消解方法比较[J]. 理化检验:化学分册, 2005,41(3):167-168,171.
|
[18] |
Pardo R, Helena B A, Cazurro C, et al. Application of two-and three-way principal component analysis to the interpretation of chemical fractionation results obtained by the use of the BCR procedure[J]. Analytica Chimica Acta, 2004,523(1):125-132.
|
[19] |
王鸣宇,张雷,秦延文,等.湘江表层沉积物重金属的赋存形态及其环境影响因子分析[J]. 环境科学学报, 2011,31(11):2447-2458.
|
[20] |
Hakanson L. An ecological risk index for aquatic pollution control. a sedimentological approach[J]. Water Research, 1980, 14(8):975-1001.
|
[21] |
徐燕,李淑芹,郭书海,等.土壤重金属污染评价方法的比较[J]. 安徽农业科学, 2008,36(11):4615-4617.
|
[22] |
孟红明,张振克.石梁河水库沉积物中重金属的累积污染研究[J]. 环境科学研究, 2008,21(3):44-50.
|
[23] |
万金保,王建永,吴丹.乐安河沉积物重金属污染现状评价[J]. 环境科学与技术, 2008,31(11):130-133.
|
[24] |
黄顺生,廖启林,吴新民,等.扬中地区农田土壤重金属污染调查与评价[J]. 土壤, 2006,38(4):483-488.
|
[25] |
林海鹏,于云江,李定龙,等.沈抚灌区土壤重金属污染潜在生态风险评价[J]. 环境与健康杂志, 2009,26(4):320-323.
|
[26] |
雷凯,卢新卫,王利军.宝鸡市街尘中铅的污染与评价[J]. 环境科学与技术, 2007,30(11):43-45.
|
[27] |
Femandez J A., Carballeira A. Evaluation of contamination, by different elements, in terrestrial mosses[J]. Archives of Environmental Contamination and Toxicology, 2001,40(4):461-468.
|
[28] |
马建华,王晓云,侯千,等.某城市幼儿园地表灰尘重金属污染及潜在生态风险[J]. 地理研究, 2011,30(3):486-495.
|
[29] |
吴祥庆,黎小正,秦振发,等.灰色聚类法在西津水库水体富营养化评价中的应用[J]. 安徽农业科学, 2010,38(22):11926-11928.
|
[30] |
Pan A, Hu L, Li T, et al. Assessing the eutrophication of shengzhong reservoir based on grey llustering method[J]. Chinese Journal of Population, Resources and Environment, 2009, 7(2):83-87.
|
[31] |
谭晓莲,施泽明,罗改.重金属毒性权重赋值的土壤地球化学质量模糊综合评价--以内江市白马镇为例[J]. 安徽农业科学, 2008,36(25):11013-11016.
|
[32] |
Singh K P, Mohand, Singh V K, et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments-a tributary of Ganges, India[J]. Journal of Hydrology, 2005, 312(1-4):14-27.
|
[33] |
韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J]. 生态学杂志, 2005,24(12):1499-1502.
|
[34] |
Martley E, Gulson B, Louie H, Wu M, Di P. Metal partitioning in soil profiles in the vicinity of an industrial complex, New South Wales, Australia[J]. Geochemistry: Exploration, Environment, Analysis, 2004,4(2):171-179.
|
[35] |
李如忠,姜艳敏,潘成荣,等.典型有色金属矿山城市小河流沉积物重金属形态分布及风险评估[J]. 环境科学, 2013,34(3): 1067-1075.
|
[36] |
高彦鑫,冯金国,唐磊,等.密云水库上游金属矿区土壤中重金属形态分布及风险评价[J]. 环境科学, 2012,33(5):1707-1717.
|
[37] |
杨皓,胡继伟,黄先飞,等.喀斯特地区金刺梨种植基地土壤肥力研究[J]. 水土保持研究, 2015,22(3):50-55.
|
[38] |
虞敏达,张慧,何小松,等.典型农业活动区土壤重金属污染特征及生态风险评价[J]. 环境工程学报, 2016,10(3):1500-1507.
|
[39] |
冯新斌,洪业汤,倪建宇,等.贵州煤中汞的分布,赋存形态及对环境的影响[J]. Coal Geology & Exploration, 1998:12-15.
|
[40] |
黄文辉,杨宜春.中国煤中的汞[J]. 中国煤田地质, 2002,14: 37-40.
|
[41] |
王波,王元仲,李冬梅,等.迁安市农田重金属含量空间变异性[J]. 应用生态学报, 2006,17(8):1495-1500.
|
[42] |
田林锋,胡继伟,罗桂林,等.贵州百花湖沉积物重金属稳定性及潜在生态风险性研究[J]. 环境科学学报, 2012,32(4):885-894.
|
[43] |
Quevauviller P H, Rauret G, Lopez-S J F, et al. Certification of trace metal extractable contents in a sediment reference material (CRM 601) following a three-step sequential extraction procedure[J]. Science of the Total Environment, 1997,205(23): 223-234.
|
[44] |
Umoren I, Udoh A, Udousoro I. Concentration and chemical speciation for the determination of Cu, Zn, Ni, Pb and Cd from refuse dump soils using the optimized BCR sequential extraction procedure[J]. Environmentalist, 2007,27(2):241-252.
|
[45] |
卢少勇,焦伟,金相灿,等.滇池内湖滨带沉积物中重金属形态分析[J]. 中国环境科学, 2010,30(4):487-492.
|
[46] |
高文文,白中科,余勤飞.煤矿工业场地土壤重金属污染评[J]. 中国矿业, 2015,24(8):59-64.
|
[47] |
郭笑笑,刘丛强,朱兆洲,等.土壤重金属污染评价方法[J]. 生态学杂志, 2011,30(5):889-896.
|
|
|
|