|
|
Tracking migration and diffusion of red tides in Qinhuangdao coastal water based on FBM method |
KUANG Cui-ping1, XIE Hua-lang1, SU Ping2, GU Jie3, MAO Xiao-dan1 |
1. College of Civil Engineering, Tongji University, Shanghai, 200092, China;
2. Guangxi Communications Planning Surveying and Designing Institute, Nanning, 530029, China;
3. College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China |
|
|
Abstract Based on the hydrodynamic simulation by Delft3D-FLOW, the model of migration and diffusion of red tides, based on the FBM (Fractional Brownian Motion) particle tracking method, was established and validated. The flow and wind-driven current in Qinhuangdao coastal water were simulated, and the effects of wind-driven current in migration and diffusion of red tides were presented. The characteristics of the FBM method, Lagrange method and the conventional Brown method in simulating migration and diffusion of red tides were compared. The sensitivity of Hurst index in the model was analysed, and its reasonable range in simulation of migration and diffusion of red tides was obtained in Qinhuangdao coastal water. Main conclusions were:1) red tides migrated in Qinhuangdao coastal water with reciprocating tidal currents, resulting in a small net migration distance of red tides during an entire flood and ebb period; 2) the tidal current in Qinhuangdao coastal water was weak in the summer, but the wind-driven current in the northeast direction resulted in the red tide being transported northeastwardly; 3) Hurst index could significantly affect the diffusion range of particle cloud, Hurst index in the range of 0.80±0.03could more accurately simulate migration and diffusion of red tides in Qinhuangdao coastal water; 4) FBM method could simulate the non-Fickian diffusion phenomenon of red tides, which made the diffusion range and shape of the particle clouds closer to the actual situation than those using the Lagrange method and the conventional Brown method.
|
Received: 22 January 2016
|
|
|
|
|
[1] |
郭玉洁.大连湾赤潮生物——赤潮异弯藻[J]. 海洋与湖沼, 1994,(2):211-215.
|
[2] |
齐雨藻,洪英,吕颂辉,等.南海大鹏湾海洋褐胞藻赤潮及其成因[J]. 海洋与湖沼, 1994,(2):132-138.
|
[3] |
孙英杰,黄尧,赵由才.海洋与环境[M]. 北京:冶金工业出版社, 2011.
|
[4] |
Okubo A. Oceanic diffusion diagrams[J]. Deep-Sea Research, 1971,18:789-802.
|
[5] |
Osborne A R, Kirwan A D, Provenzale A, et al. Fractal drifter trajectories in the kuroshio extension[J]. Tellus, 1989,41A:416-435.
|
[6] |
Sanderson B G, Booth D A. The fractal dimension of drifter trajectories and estimates of horizontal eddy-diffusivity[J]. Tellus, 1991,43A:334-349.
|
[7] |
List E J, Gartrell G, Winant C D. Diffusion and dispersion in coastal waters[J]. Journal of Hydraulic Engineering, 1990, 116(10):1158-1179.
|
[8] |
Manderlbrot B B. The fractals: Form, chance and dimension[M]. San Francisco: Freema, 1977.
|
[9] |
Addison P S, Qu B, Nisbet A, et al. A non-fickian, particle-tracking diffusion model based on fractional Brownian motion[J]. International Journal for Numberical Methods in Fluids, 1997,(25):1373-1384.
|
[10] |
Qu B, Addision P S, Mead C T. Coastal dispersion modelling using an accelerated FBM particle tracking method[J]. Coastal Engineering Journal, 2003,45(1):139-158.
|
[11] |
顾恩慧,姚炎明.乐清湾北港区溢油轨迹的分形模拟[J]. 海洋通报, 2013,32(4):460-466.
|
[12] |
顾恩慧.海上溢油行为与归宿的数值模拟[D]. 浙江大学, 2013.
|
[13] |
瞿波,Addison P S,Mead C T.加速分数型布朗运动粒子追踪模型在水面污染扩散中的应用[J]. 水利学报, 2009(12):1517-1523.
|
[14] |
瞿波,保尔·爱迪生,孙兰红.分数布朗运动的简化和应用[J]. 上海师范大学学报(自然科学版), 2009(6):594-602.
|
[15] |
Guo W J, Wang Y X, Me M X, et al. Modeling oil spill trajectory in coastal waters based on fractional Brownian motion[J]. Marine Pollution Bulletin, 2009,58(9):1339-1346.
|
[16] |
WL|DelftHydraulics.User Manual Delft3D-FLOW[Z]. WL|Delft Hydraulics. 2013.
|
[17] |
Addison P S, Ndumu A S, Qu B. A fast non-Fickian particle-tracking diffusion simulator and the effect of shear on the pollutant diffusion process[J]. International Journal for Numerical Methods in Fluids, 2000,34(2):145-166.
|
[18] |
瞿波,保尔·爱迪生.流体中污染物扩散的分形模拟[J]. 水利水电科技进展, 2009(6):9-12.
|
[19] |
Qu B, Addision P S. Development of FBMINC model for particle diffusion in fluids[J]. International Journal of Sediment Research, 2009,24(4):439-454.
|
[20] |
Mandelbrot B B, van Ness J W. Fractional Brownian motions, fractal noises and applications[J]. SIAM Review, 1968,10(4): 422-437.
|
[21] |
秦耀辰,刘凯.分形理论在地理学中的应用研究进展[J]. 地理科学进展, 2003(4):426-436.
|
[22] |
周火艳,王崇云,彭明春,等.滇池水华分形结构动态研究[J]. 环境科学与技术, 2011,34(2):32-35,46.
|
[23] |
Addision P S, Qu B. Development of FBMINC model for particle diffusion in fluids[J]. International Journal of Sediment Research, 2009,24(4):439-454.
|
[24] |
Yamamoto T, Okai M. Effects of diffusion and upwelling on the formation of red tides[J]. Journal of Plankton Research, 2000, 22(2):363-380.
|
[25] |
Chen X H, Zhu L S, Zhang H S. Numerical simulation of summer circulation in the East China Sea and its application in estimating the sources of red tides in the Yangtze River estuary and adjacent sea areas[J]. Journal of Hydrodynamics, 2007,19(3):272-281.
|
[26] |
郑向阳,邢前国,李丽,等.2008年黄海绿潮路径的数值模拟[J]. 海洋科学, 2011,(7):82-87.
|
[27] |
黄娟,吴玲娟,高松,等.黄海绿潮应急漂移数值模拟[J]. 海洋预报, 2011,28(1):25-32.
|
[28] |
吴玲娟,曹丛华,黄娟,等.黄海绿潮应急溯源数值模拟初步研究[J]. 海洋科学, 2011,(6):44-47.
|
[29] |
瞿波,保尔·爱迪生.用分数型布朗运动模拟海湾的剪切湍流分散[J]. 水利水电科技进展, 2010,(3):12-16.
|
[30] |
瞿波.分形几何与流体[M]. 上海:上海社会科学院出版社, 2013.
|
[31] |
Allen J I, Somerfield P J, Gilbert F J. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models[J]. Journal of Marine Systems, 2007,64(1-4):3-14.
|
|
|
|