|
|
Analyses on the spatial-temporal distribution features and causing factors of atmospheric haze in the southern city-group of Sichuan |
HE Mu-quan1,2, LIU Zhi-hong1, ZHANG Ying1, ZHANG Yang3, YAN Yan4, HUANG Guan1, ZHANG Juan1, CHEN Jun-hui2, HE Min2, FAN Wu-bo2 |
1. School of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China; 2. Sichuan Academy of Environmental Sciences, Chengdu, 610041, China; 3. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; 4. School of Earth and Space Science, University of Science and Technology of China, Hefei 230001, China |
|
|
Abstract This study checked the quality of MODIS 3km AOD daily data using the local CE318 data in southern Sichuan. After ensuring the availability of MODIS AOD product, the relationship model of MODIS AOD and PM2.5/10 was set up. And the temporal-spatial characteristics of atmospheric haze in the city group of Southern Sichuan were analyzed. The correlation coefficient between CE318AOD data and MODIS AOD product was 0.779, and the optimal correlation coefficient between PM2.5, PM10 and MODIS AOD was 0.894, 0.83 respectively. Spatially, the value of average AOD in the northern region was higher than the southern region of southern Sichuan, and the cities with highest AOD were Neijiang and Zigong. Temporally, the averaged AOD had no significant change from 2006 to 2013, but decreased obviously after 2013. Also the averaged AOD was higher in spring and winter, but lower in summer and autumn, and the largest proportion of high value was in spring. The monthly variation features showed that the AOD value was high from February to April and September and low in other months. The temporal and spatial distribution of AOD in Southern Sichuan were affected by terrain, industrial, wind speed and direction, flow field, PBL and other factors, among which, the terrain and flow field were the most prominent factors.
|
Received: 19 June 2016
|
|
|
|
|
[1] |
Zhang X Y, Wang Y Q, Niu T, et al. Atmospheric aerosol compositions in China:spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols[J]. Atmospheric Chemistry and Physics, 2012,12(2):779-799.
|
[2] |
王中挺,陈良富,厉青,等.灰霾组分的多角度偏振反射特性模拟[J]. 光学学报, 2015,35(9):9-17.
|
[3] |
毛节泰,张军华,王美华.中国大气气溶胶研究综述[J]. 气象学报, 2002,60(5):625-634.
|
[4] |
刘贞,郑有飞,刘建军,等.基于A-train卫星对中国北方地区气溶胶分布的研究[J]. 中国环境科学, 2015,35(10):2891-2898.
|
[5] |
刘璇,朱彬,侯雪伟,等.基于卫星遥感和地面观测资料的霾过程分析——以长江三角洲地区一次严重霾污染过程为例[J]. 中国环境科学, 2015,35(3):641-651.
|
[6] |
邓学良,邓伟涛,何冬燕.近年来华东地区大气气溶胶的时空特征[J]. 大气科学学报, 2010,33(3):347-354.
|
[7] |
罗云峰,李维亮,周秀骥.20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析[J]. 气象学报, 2001,59(1):77-87.
|
[8] |
李成才,毛节泰,刘启汉.用MODIS遥感资料分析四川盆地气溶胶光学厚度时空分布特征[J]. 应用气象学报, 2003,14(1):1-7.
|
[9] |
Kaskaoutis D G, Kambezidis H D, Hatzianastassiou N, et al. Aerosol climatology:dependence of the Angstrom exponent on wavelength over four AERONET sites[J]. Atmospheric chemistry and physics discussions. 2007,7(3):7347-7397.
|
[10] |
张颖,刘志红,吕晓彤,等.四川盆地一次污染过程的WRF模式参数化方案最优配置[J]. 环境科学学报, 2016,36(8):2819-2826.
|
[11] |
Lin C, Li Y, Yuan Z, et al. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5[J]. Remote Sensing of Environment, 2015,156:117-128.
|
[12] |
谢志英,刘浩,唐新明.北京市MODIS气溶胶光学厚度与PM10质量浓度的相关性分析[J]. 环境科学学报, 2015,35(10):3292-3299.
|
[13] |
Song W, Jia H, Huang J, et al. A satellite-based geographically weighted regression model for regional PM2.5 estimation over the Pearl River Delta region in China[J]. Remote Sensing of Environment, 2014,154:1-7.
|
[14] |
王莉莉,辛金元,王跃思,等.CSHNET观测网评估MODIS气溶胶产品在中国区域的适用性[J]. 科学通报, 2007,52(4):477-486.
|
[15] |
陈艳,孙敬哲,张武,等.兰州地区MODIS气溶胶光学厚度和空气污染指数相关性研究[J]. 兰州大学学报(自然科学版), 2013,49(6):765-772.
|
[16] |
Wang J. Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass:Implications for air quality studies[J]. Geophysical Research Letters, 2003,30(21):2095-2098.
|
[17] |
Holben B N, Eck T F, Slutsker I, et al. AERONET——A Federated Instrument Network and Data Archive for Aerosol Characterization[J]. Remote Sensing of Environment, 1998, 66(1):1-16.
|
[18] |
Zhou C Y, Liu Q H, Tang Y, et al. Comparison between MODIS aerosol product C004 and C005 and evaluation of their applicability in the north of China[J]. Journal of Remote Sensing, 2009,13(5):854-862.
|
[19] |
齐玉磊, 葛觐铭, 黄建平. 北方地区MODIS和MISR与AERONET气溶胶光学厚度的比较及其时空分布分析[J]. 科学通报, 2013,58(17):1670-1679.
|
[20] |
王宏斌,张镭,焦圣明,等.基于AERONET观测资料对MODIS气溶胶产品的验证[N]. 北京, 2014.
|
[21] |
张洋.基于多源卫星遥感的四川成都地区气溶胶光学厚度反演[D]. 成都信息工程大学, 2015.
|
[22] |
张展毅,李丰果,杨冠玲,等.大气颗粒物浓度自动监测仪器的研制及性能比对测试[J]. 北京大学学报(自然科学版), 2006, 42(6):767-773.
|
[23] |
桂华侨.大气细颗粒物在线监测关键技术及产业化[J]. 科技创新与品牌, 2016,(4):63-64.
|
[24] |
张洋,刘志红,于明洋,等.四川省气溶胶光学厚度时空分布特征[J]. 四川环境, 2014,33(3):48-53.
|
[25] |
黄观,刘伟,刘志红,等.乌鲁木齐市MODIS气溶胶光学厚度与PM10浓度关系模型研究[J]. 环境科学学报, 2016,36(2):649-657.
|
[26] |
王家成,朱成杰,朱勇,等.北京地区多气溶胶遥感参量与PM2.5相关性研究[J]. 中国环境科学, 2015,35(7):1947-1956.
|
[27] |
Stull Roland B,赵长新.边界层气象学导论[M]. 北京:气象出版社, 1991.
|
[28] |
王耀庭,李威,张小玲,等.北京城区夏季静稳天气下大气边界层与大气污染的关系[J]. 环境科学研究, 2012,25(10):1092-1098.
|
[29] |
杨军,李子华,黄世鸿.相对湿度对大气气溶胶粒子短波辐射特性的影响[J]. 大气科学, 1999,23(2):239-247.
|
[30] |
董真,黄世鸿,李子华.相对湿度对大气气溶胶可见辐射吸收的影响[J]. 气象科学, 2000,20(4):487-493.
|
[31] |
张立盛,石广玉.相对湿度对气溶胶辐射特性和辐射强迫的影响[J]. 气象学报, 2002,60(2):230-237.
|
[32] |
荣艳敏,银燕.对流云对大气气溶胶和相对湿度变化响应的数值模拟[J]. 大气科学, 2010,34(4):815-826.
|
[33] |
姚青,蔡子颖,韩素芹,等.天津冬季相对湿度对气溶胶浓度谱分布和大气能见度的影响[J]. 中国环境科学, 2014,34(3):596-603.
|
[34] |
于兴娜,马佳,朱彬,等.南京北郊秋冬季相对湿度及气溶胶理化特性对大气能见度的影响[J]. 环境科学, 2015,36(6):1919-1925.
|
[35] |
丁国安,陈尊裕,高志球,等.北京城区低层大气PM10和PM2.5垂直结构及其动力特征[J]. 中国科学D辑, 2005,35(S1):31-44.
|
[36] |
毛晓琴.上海地区灰霾天气气溶胶物理特性研究[D]. 上海:东华大学, 2010.
|
[37] |
廖晓农,张小玲,王迎春,等.北京地区冬夏季持续性雾-霾发生的环境气象条件对比分析[J]. 环境科学, 2014,35(6):2031-2044.
|
[38] |
李义宇.华北夏季气溶胶与云微物理特征的飞机观测研究[D]. 南京:南京信息工程大学, 2015.
|
[39] |
何敏,王幸锐,韩丽,等.四川省秸秆露天焚烧污染物排放清单及时空分布特征[J]. 环境科学, 2015,36(4):1208-1216.
|
[40] |
陈军辉,范武波,钱骏,等.利用IVE模型建立成都市轻型汽油客车排放清单[J]. 环境科学学报, 2015,35(7):2016-2024.
|
[41] |
何敏,王幸锐,韩丽.四川省大气固定污染源排放清单及特征[J]. 环境科学学报, 2013,33(11):3127-3137.
|
[1] |
GUO Jun, YIN Yan, WANG Yong-wei, KANG Han-qing, XIAO Hui, CHEN Kui, HAO Jian. Numerical study of the dust distribution, source and sink, and transport features over East Asia[J]. CHINA ENVIRONMENTAL SCIENCECE, 2017, 37(3): 801-812. |
|
|
|
|