|
|
Comprehensive integration approaches for PM2.5 statistical interpretation in shanghai |
LI Ya-yun1, SHU Jiong1, SHEN Yu2 |
1. Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai 200241, China; 2. Shanghai Climate Center, Shanghai 200030, China |
|
|
Abstract The comprehensive integration approaches for statistical interpretation were employed to predict PM2.5 concentration in Shanghai. Three kinds of model output statistics (MOS) models were built up by combining WRF model output with kalman filtering (KALMAN), partial least squares regression (PLS) and real-time iterative model (RTIM) respectively. And then three types of integrated model, based on MOS model above Multi-model average integration, recursive positive weight synthesis and multivariate linear regression integration, were separately apply to three days prediction for daily average concentration of PM 2.5 from Dec. 2 to 31, 2014 (light pollution process) and Dec. 15, 2015 to Jan. 13, 2016 (heavy pollution process). The prediction ability of pollution weather process for these integration models was improved by providing reasonable information and reducing the systematic errors in comparison with a single MOS models, which reduced the risk of decision-making in the process of pollution. The multivariate linear regression integration model presented higher precision and stability by comparative analysis of light and heavy pollution prediction processes. In all, the comprehensive integration approaches for statistical interpretation have great potential to be applied to regional air pollution prediction in operational model.
|
Received: 18 June 2016
|
|
|
|
|
[1] |
Chan C K, Yao X. Air pollution in mega cities in China[J]. Atmospheric Environment, 2008,42(1):1-42.
|
[2] |
Huang C, Chen C H, Li L, et al. Emission inventory of anthropogenic air pollutants and VOC species in the Yangtze River Delta region, China[J]. Atmospheric Chemistry & Physics, 2011,11(9):4105-4120.
|
[3] |
Hu J, Wang Y, Ying Q, et al. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China[J]. Atmospheric Environment, 2014,95(1):598-609.
|
[4] |
Du X, Kong Q, Ge W, et al. Characterization of personal exposure concentration of fine particles for adults and children exposed to high ambient concentrations in Beijing, China[J]. Journal of Environmental Sciences, 2010,22(11):1757-1764.
|
[5] |
Qiu H, Yu I T, Wang X, et al. Differential effects of fine and coarse particles on daily emergency cardiovascular hospitalizations in Hong Kong[J]. Atmospheric environment, 2013,64:296-302.
|
[6] |
Zhang H, Xie B, Zhao S Y, et al. PM2.5 and tropospheric O3 in China and an analysis of the impact of pollutant emission control[J]. Advances in Climate Change Research, 2014,5(3):136-141.
|
[7] |
Pilinis C, Seinfeld J H, Seigneur C. Mathematical modeling of the dynamics of multicomponent atmospheric aerosols[J]. Atmospheric Environment (1967), 1987,21(4):943-955.
|
[8] |
房小怡,蒋维楣,吴涧,等.城市空气质量数值预报模式系统及其应用[J]. 环境科学学报, 2004,24(1):111-115.
|
[9] |
欧阳琰,蒋维楣,刘红年.城市空气质量数值预报系统对PM2.5的数值模拟研究[J]. 环境科学学报, 2007,27(5):838-845.
|
[10] |
Hubbard M C, Cobourn W G. Development of a regression model to forecast ground-level ozone concentration in Louisville, KY[J]. Atmospheric Environment, 1998,32(14):2637-2647.
|
[11] |
谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J]. 热带气象学报, 2007,23(5):515-520.
|
[12] |
周瑶瑶,马嫣,郑军,等.南京北郊冬季霾天PM2.5水溶性离子的污染特征与消光作用研究[J]. 环境科学, 2015,30(6):1926-1934.
|
[13] |
Comrie A C. Comparing Neural Networks and Regression Models for Ozone Forecasting[J]. Journal of the Air & Waste Management Association, 1997,47(6):653-663.
|
[14] |
Lange N, Bishop C M, Ripley B D. Neural Networks for Pattern Recognition.[J]. Agricultural Engineering International the Cigr Journal of Scientific Research & Development Manuscript Pm, 1995,12(5):1235-1242.
|
[15] |
Cobourn W G, Dolcine L, French M, et al. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting[J]. Journal of the Air & Waste Management Association, 2000,50(11):1999-2009.
|
[16] |
Kolehmainen M, Martikainen H, Ruuskanen J. Neural networks and periodic components used in air quality forecasting[J]. Atmospheric Environment, 2001,35(5):815-825.
|
[17] |
Feng X, Li Q, Zhu Y, et al. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation[J]. Atmospheric Environment, 2015,107:118-128.
|
[18] |
刘春霞,周家斌.用卡尔曼滤波预报南海热带气旋路径的试验[J]. 热带气象学报, 1997,13(4):349-356.
|
[19] |
朱江,汪萍.集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用[J]. 大气科学, 2006,30(5):871-882.
|
[20] |
Djalalova I, Monache L D, Wilczak J. PM2.5, analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model[J]. Atmospheric Environment, 2015, 108:76-87.
|
[21] |
朱红芳,王东勇.合肥市空气质量预报方法[J]. 气象, 2002, 28(5):40-43.
|
[22] |
许建明,徐祥德,刘煜,等.CMAQ-MOS区域空气质量统计修正模型预报途径研究[J]. 中国科学, 2005,35(A01):131-144.
|
[23] |
Bian Lingen.北京城市大气环境污染机理与调控原理[J]. 应用气象学报, 2006,17(6):815-828.
|
[24] |
程念亮,李云婷,孙峰,等.北京市空气重污染天气类型分析及预报方法简介[J]. 环境科学与技术, 2015,38(5):189-194.
|
[25] |
Byun D W, Ching J K S, Byun D W, et al. Science Algorithms of the EPA Models-3Community Multiscale Air Quality (CMAQ) Modeling System[M]. Environmental Protection Agency Office of Research & Development, 1999.
|
[26] |
Krishnamurti T N, Kishtawal C M, LaRow T, et al. Improved Weather and Seasonal Climate Forecasts from Multimodel Superensemble[J]. Science, 1999,285(5433):1548-1550.
|
[27] |
Krishnamurti B T N, Kishtawal C M, Larow T et al. Multi-model Superensemble Forecasts for Weather and Seasonal Climate[J]. Science, 2012,285(5433):1548-1550.
|
[28] |
Ebert E E. Ability of a Poor Man's Ensemble to Predict the Probability and Distribution of Precipitation[J]. Monthly Weather Review, 2001,129(10):2461.
|
[29] |
Mylne K R, Evans R E, Clark R T. Multi-model multi-analysis ensembles in quasi-operational medium-range forecasting[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(579):361-384.
|
[30] |
Vijaya Kumar T S V, Krishnamurti T N, Fiorino M, et al. Multimodel Superensemble Forecasting of Tropical Cyclones in the Pacific[J]. Monthly Weather Review, 2003,131(3):574.
|
[31] |
马清,龚建东,李莉,等.超级集合预报的误差订正与集成研究[J]. 气象, 2008,34(3):42-48.
|
[32] |
崔慧慧,智协飞.基于TIGGE资料的地面气温延伸期多模式集成预报[J]. 大气科学学报, 2013,36(2):165-173.
|
[33] |
张涵斌,智协飞,王亚男,等.基于TIGGE资料的西太平洋热带气旋多模式集成预报方法比较[J]. 气象, 2015(9):1058-1067.
|
[34] |
王自发,吴其重,Alex,等.北京空气质量多模式集成预报系统的建立及初步应用[J]. 南京信息工程大学学报:自然科学版, 2009,1(1):19-26.
|
[35] |
唐晓,王自发,朱江,等.北京地面O3的集合预报试验[J]. 气候与环境研究, 2010,15(5):677-684.
|
[36] |
黄思,唐晓,徐文帅,等.利用多模式集合和多元线性回归改进北京PM10预报[J]. 环境科学学报, 2015,35(1):56-64.
|
[37] |
陈焕盛,王自发,吴其重,等.空气质量多模式系统在广州应用及对PM10预报效果评估[J]. 气候与环境研究, 2013,18(4):427-435.
|
[38] |
陆成伟,周来东,邓也,等.基于Models-3的自修正空气质量预报系统及其效果检验[J]. 中国环境管理, 2016,8(2):102-109.
|
[39] |
徐文帅,李云婷,吴其重,等.AQI标准下北京市空气质量数值预报系统及其在重大活动保障中的应用[J]. 中国环境监测, 2016,32(2):11-19.
|
[40] |
佚名.利用多模式集合和多元线性回归改进北京PM预报[J]. 环境科学学报, 2015,35(1):56-64.
|
[41] |
Monache L D, Nipen T, Deng X, et al. Ozone ensemble forecasts:2. A Kalman filter predictor bias correction[J]. Journal of Geophysical Research Atmospheres, 2006,111(D5):769-785.
|
[42] |
尤佳红,束炯,陈亦君,等.基于MOS的杭州秋冬季空气污染预报和霾诊断[J]. 中国环境科学, 2014,34(7):1660-1666.
|
[43] |
陈亦君,尤佳红,束炯,等.基于WRF-RTIM的上海地区霾预报MOS方法研究[J]. 环境科学学报, 2014,34(3):574-581.
|
[44] |
Cobourn W G, Dolcine L, French M, et al. A comparison of nonlinear regression and neural network models for ground-level ozone forecasting[J]. Journal of the Air & Waste Management Association, 2000,50(11):1999-2009.
|
[45] |
谈建国,陆国良,耿福海,等.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报[J]. 热带气象学报, 2007,23(5):515-520.
|
[46] |
Einicke G A. Smoothing, Filtering and Prediction:Estimating the Past, Present and Future. Rijeka, Croatia:Intech[R]. ISBN 2012:978-953-307-752-9.
|
[47] |
Forina M, Lanteri S, Kowalski B R. Chemometrics. Mathematics and Statistics in Chemistry[J]. NATO ASI Series, Ser. C, 1984, 138:439-66.
|
[48] |
GB 3095-2012环境空气质量标准[S].
|
|
|
|