|
|
CH4 emission and CH4 emission reduction potential of intermediate cover layer in semi-aerobic landfills |
YUE Bo1, YAN Zhuo-yi2, HUANG Qi-fei1, WU Xiao-hui1, GAO Hong2 |
1. Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; 2. Faculty of Civil Engineering and Architectural, Kunming University of Science and Technology, Kunming 650500, China |
|
|
Abstract The CH4 emission fluxes of a MSW semi-aerobic landfill located in Hebei Province were determined; meanwhile the CH4 oxidation capacities of the intermediate cover material. Based on the above research, the CH4 emission reduction potential of intermediate cover layer were analyses in semi-aerobic landfill. The surface CH4 emission flux of intermediate cover layer is relatively large at noon and afternoon, and the average CH4 emission fluxes for the landfill age of 4, 8, 12, and 16months were 4.79, 21.16, 81.04 and 7.44g/(m2·d), respectively. Moreover, the CH4 oxidation capacities of intermediate cover material were:aged-refuse in anaerobic landfill > aged-refuse in semi-aerobic landfill > aged-cover soil > the mixture of aged-refuse and new cover soil (1:10, weight/weight) > animal manure compost > MSW composting > new cover soil. Theoretically, for the MSW landfill bodies with the age of 4, 8 and 16months, the CH4 gas emissions can be completely oxidized by covering layer of the aged-refuse in anaerobic landfill, aged-refuse in semi-aerobic landfill, aged cover soil and stale garbage, or the mixture of aged-refuse and new cover soil (1:10, weight/weight). In addition, for the MSW landfill bodies with the age of 12months, the CH4 gas emissions in area around 5~15m of air pipe can be theoretically oxidized by the cover layer of the aged-refuse or aged cover soil, but in area around 0~5m of air pipe cannot be completely eliminated by the cover materials.
|
Received: 14 June 2016
|
|
|
|
|
[1] |
张英民,尚晓博,李开明,等.城市生活垃圾处理技术现状与管理对策[J]. 生态环境学报, 2011,20(2):389-396.
|
[2] |
Zuberi M J S, Ali S F. Greenhouse effect reduction by recovering energy from waste landfills in Pakistan[J]. Renewable & Sustainable Energy Reviews, 2015,44(44):117-131.
|
[3] |
张维.准好氧填埋场CH4减排和加速稳定化的微生物学机制研究[D]. 陕西:西北农林科技大学, 2010.
|
[4] |
朱磊,张相锋,董世魁,等.垃圾填埋场新型覆盖层材料厚度对甲烷氧化行为的影响[J]. 生态环境学报, 2009,18(6):2122-2126.
|
[5] |
王莉.矿化垃圾作为生活垃圾填埋场甲烷氧化覆盖材料的技术研究[D]. 上海:同济大学环境科学与工程学, 2009.
|
[6] |
王丹,赵玲,尹平河,等.垃圾填埋场覆盖材料改性污泥的甲烷氧化动力学[J]. 暨南大学学报:自然科学与医学版, 2012, 33(3):329-334.
|
[7] |
岳波,林晔,王琪,等.填埋场覆盖材料的甲烷氧化能力及其影响因素研究[J]. 环境工程技术学报, 2011,01(1):57-62.
|
[8] |
吴睿,葛苏阳,徐力刚,等.新型覆土材料的CH4氧化能力与N2O释放能力[J]. 环境科学研究, 2015,28(7):1165-1171.
|
[9] |
向靓,向武.城市垃圾填埋场甲烷释放通量的研究[J]. 中国沼气, 2006,24(2):21-24.
|
[10] |
Jha AK, Sharma C, Singh N, et al. Greenhouse gas emissions from municipal solid waste management in Indian mega-cities:A case study of Chennai landfill sites[J]. Chemosphere, 2008,71(4):750-758.
|
[11] |
邵立明,仲跻胜,张后虎,等.生活垃圾填埋场春夏季CH4释放及影响因素[J]. 环境科学研究, 2009,22(1):83-88.
|
[12] |
王静.垃圾生物覆盖土对填埋场甲烷减排的机理研究[D]. 浙江:浙江大学, 2011.
|
[13] |
Zhang H, Yan X, Cai Z, et al. Effect of rainfall on the diurnal variations of CH4, CO2, and N2O fluxes from a municipal solid waste landfill[J]. Science of the Total Environment, 2012,442(1):73-76.
|
[14] |
杨雪,岳波,黄泽春,等.准好氧填埋场作业台阶表面CH4气体的释放通量研究[J]. 环境工程技术学报, 2011,01(5):383-388.
|
[15] |
郑军,程红兵,刘尚俊,等.甲烷利用菌培养条件的优化及其初步应用[J]. 中国生物工程杂志, 2007,27(12):80-83.
|
[16] |
符力.中国低温湿地有机质厌氧降解的温度敏感性及纳米四氧化三铁促进甲烷产生[D]. 北京:中国农业大学, 2015.
|
[17] |
辛丹慧,赵由才,柴晓利.填埋场甲烷抑制工艺对甲烷释放的影响研究[J]. 有色冶金设计与研究, 2015,36(2):46-49.
|
[18] |
郑有飞,周渭,尹继福,等.填埋场甲烷排放因素分析及甲烷减排研究进展[J]. 南京信息工程大学学报:自然科学版, 2013, 5(4):296-304.
|
[19] |
岳波,林晔,黄泽春,等.垃圾填埋场的甲烷减排及覆盖层甲烷氧化研究进展[J]. 生态环境学报, 2010,19(8):2010-2016.
|
[20] |
李海玲,岳波,黄启飞,等.垃圾填埋场覆盖材料的甲烷氧化能力与甲烷氧化菌定量分析[J]. 环境工程, 2014,32(11):118-122.
|
[21] |
He Y, Guo L, Gao J. The Advantages and Mechanism of Semiaerobic Landfill[J]. Energy Procedia, 2012,17:391-396.
|
[22] |
梅昌艮.生物覆盖层对垃圾填埋场甲烷的减量化研究[D]. 成都:西南交通大学, 2014
|
[23] |
GB16889-200生活垃圾填埋场污染控制标准[S].
|
[1] |
. [J]. CHINA ENVIRONMENTAL SCIENCECE, 2006, 26(ZK): 0-0. |
|
|
|
|