|
|
Modeling study on the comparison of the impacts of two kinds of pollution source in a haze episode occurred over the Yangtze River Delta during late January, 2015 |
HE Yao1, ZHU Bin1, LI Feng2, KANG Han-qing1, GAO Jin-hui1 |
1. Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. Zhuji Meteorological Administration, Zhuji 311800, China |
|
|
Abstract A haze episode, which occurred over Yangtze River Delta (YRD) from 21 January to 24 January, 2013, was investigated using the WRF-CMAQ model system. The temporal and spatial distribution characteristics and regional transport process of fine particulate matter (PM2.5) were discussed. In addition, the contribution of local accumulation and long-range transport to this haze episode were also analyzed. Results showed that the WRF-CMAQ model could reproduce the temporal and spatial distributions and evolution features of PM2.5. On 21 st, the YRD was in northerly winds prevailed at the ground level, which led to short-term northern input-base pollution. Horizontal flux at the ground level during short-term pollution was larger than that during local accumulation pollution. There was a vertical transport in boundary layer. During 22 nd to 24 st, small wind at surface and temperature inversion led to the local accumulation of pollution. The major source processes in sequence during short-term pollution are local source emission (35.04%), horizontal advection (27.07%), aerosol chemical process (20.91%) and vertical advection (14.07%). Those during local accumulation pollution are local source emission (50.93%), aerosol chemical process (27.05%), vertical advection (17.47%) and horizontal advection (0.34%). The contribution rates of horizontal advection, source emission and aerosol chemical process changed obviously.
|
Received: 12 September 2016
|
|
|
|
|
[1] |
刘爱君,杜尧东,王惠英.广州灰霾天气的气候特征分析[J]. 气象, 2004,30(12):68-71.
|
[2] |
黄 义,范绍佳,刘 吉.珠江三角洲城市群一次区域性灰霾过程气象特征分析[C]//中国气象学会2008年年会大气环境监测、预报与污染物控制分会场论文集, 2008.
|
[3] |
李 菲,吴 兑,王 婷,等.广州2010年亚运会会期的灰霾天气问题[J]. 广东气象, 2008,30(2):19-21.
|
[4] |
康 娜,高庆先,周锁铨,等.区域大气污染数值模拟方法研究[J]. 环境科学研究, 2006,19(6):20-26.
|
[5] |
Harmelen T V, Bakker J. Long-term reductions in costs of controlling regional air pollution in Europe due to climate policy[J]. Environmental Science & Policy, 2002,5(4):349-365.
|
[6] |
Chan C K, Yao X. Air pollution in mega cities in China[J]. Atmospheric Environment, 2008,42(1):1-42.
|
[7] |
张人禾,李 强,张若楠.2013年1月中国东部持续性强雾霾天气产生的气象条件分析[J]. 中国科学:地球科学, 2014,44(1):27-36.
|
[8] |
王跃思,姚 利,王莉莉,等.2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学:地球科学, 2014,44(1):15-26.
|
[9] |
朱佳雷,王体健,邢 莉,等.江苏省一次重霾污染天气的特征和机理分析[J]. 中国环境科学, 2011,31(12):1943-1950.
|
[10] |
高 健,张岳翀,王淑兰,等.北京2011年10月连续灰霾过程的特征与成因初探[J]. 环境科学研究, 2012,25(11):1201-1207.
|
[11] |
徐祥德,周 丽,周秀骥,等.城市环境大气重污染过程周边源影响域[J]. 中国科学:地球科学, 2004,34(10):958-966.
|
[12] |
Wu D, Fung J C H, Yao T, et al. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method[J]. Atmospheric Environment, 2013, 76(76):147-161.
|
[13] |
Kim C H, Park S Y, Kim Y J, et al. A numerical study on indicators of long-range transport potential for anthropogenic particulate matters over northeast Asia[J]. Atmospheric Environment, 2012,58(4):35-44.
|
[14] |
薛文博,付 飞,王金南,等.中国PM2.5跨区域传输特征数值模拟研究[J]. 中国环境科学, 2014,34(6):1361-1368.
|
[15] |
王自发,李 杰,王 哲,等.2013年1月我国中东部强霾污染的数值模拟和防控对策[J]. 中国科学:地球科学, 2014,(1):3-14.
|
[16] |
刘世玺,安俊琳,朱 彬,等.远距离输送作用对南京大气污染的影响[J]. 生态环境学报, 2010,19(11):2629-2635.
|
[17] |
王 茜.利用轨迹模式研究上海大气污染的输送来源[J]. 环境科学研究, 2013,26(4):357-363.
|
[18] |
张 艳,余 琦,伏晴艳,等.长江三角洲区域输送对上海市空气质量影响的特征分析[J]. 中国环境科学, 2010,30(7):914-923.
|
[19] |
蒋永成,赵天良,王 宏,等.福州市PM2.5污染过程中大气边界层和区域传输研究[J]. 中国环境科学, 2015,35(2):347-355.
|
[20] |
Zhang L, Wang T, Lv M, et al. On the severe haze in Beijing during January 2013:Unraveling the effects of meteorological anomalies with WRF-Chem[J]. Atmospheric Environment, 2015,104:11-21.
|
[21] |
Fu X, Cheng Z, Wang S, et al. Local and Regional Contributions to Fine Particle Pollution in Winter of the Yangtze River Delta, China[J]. Aerosol & Air Quality Research, 2016,16:1067-1080.
|
[22] |
Xu J, Yan F, Xie Y, et al. Impact of meteorological conditions on a nine-day particulate matter pollution event observed in December 2013,Shanghai, China[J]. Particuology, 2015,20:69-79.
|
[23] |
杨 鹏,朱 彬,高晋徽,等.一次以南京为中心的夏季PM2.5污染岛污染事件的数值模拟[J]. 中国环境科学, 2016,36(2):321- 330.
|
[24] |
李 锋,朱 彬,安俊岭,等.2013年12月初长江三角洲及周边地区重霾污染的数值模拟[J]. 中国环境科学, 2015,35(7):1965- 1974.
|
[25] |
王 艳,柴发合,王永红,等.长江三角洲地区大气污染物输送规律研究[J]. 环境科学, 2008,29(5):1430-1435.
|
[26] |
常炉予,许建明,周广强,等.上海典型持续性PM2.5重度污染的数值模拟[J]. 环境科学, 2016,37(3):825-833.
|
[27] |
周之栩.浙北地区一次冷空气过程中的灰霾天气过程分析[J]. 浙江气象, 2015,36(1):32-35.
|
[28] |
Davis R E, Kalkstein L S. Using a spatial synoptic climatological classification to assess changes in atmospheric pollution concentrations[J]. Physical Geography, 1990,11(4):320-342.
|
[29] |
Byun D W, Ching J K S. Science Algorithms of the EPA Models-3Community Multiscale Air Quality (CMAQ) Modeling System[J]. Environmental Protection Agency Office of Research & Development, 1999.
|
[30] |
Wu Q Z, Wang Z F, Gbaguidi A, et al. A numerical study of contributions to air pollution in Beijing during CAREBeijing- 2006[J]. Atmospheric Chemistry & Physics, 2011,11(12):5997- 6011.
|
[31] |
Draxler R R, Hess G D. An overview of the HYSPLIT_4modeling system of trajectories, dispersion, and deposition[J]. Australian Meteorological Magazine, 1998,47(4):295-308.
|
[32] |
尹 姗,何立富.2015年1月大气环流和天气分析[J]. 气象, 2015,41(4):514-520.
|
[33] |
刘 宁.珠江三角洲大气颗粒物污染特征与过程分析[D]. 北京:北京大学, 2012.
|
[34] |
聂 滕,李 璇,王占山,等.APEC期间北京市PM2.5时空分布与过程分析[J]. 中国环境科学, 2016,36(2):349-355.
|
|
|
|