|
|
Application of non-parametric kernel density estimation for developing species sensitivity distributions of copper and silver |
WANG Ying, FENG Cheng-lian, MU Yun-song, HE Jia, QIE Yu, WU Feng-chang |
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China |
|
|
Abstract Species sensitivity distribution curves of copper and silver were constructed using non-parametric kernel density estimation model to protect Chinese freshwater aquatic life, and then their water quality criteria thresholds were derived. The results showed that the robustness and accuracy of non-parametric kernel density estimation method are superior to the traditional parameters models to derive water quality criteria for two transition metals of Group IB. After comparing different taxa of two metals, we found that HC5values of vertebrates, invertebrates, fish, crustaceans, other invertebrates and all aquatic organisms were inversely proportional to atomic number. The sensitivity of invertebrates was significantly higher than that of vertebrates at high trophic level. The proposed method enriched the methodological foundation for water quality criteria and provided an alternative approach for developing SSDs of the same group and period elements to support for protection of aquatic organisms.
|
Received: 01 September 2016
|
|
|
|
|
[1] |
吴丰昌,冯承莲,曹宇静,等.我国铜的淡水生物水质基准研究[J]. 生态毒理学报, 2011,6(6):617-628.
|
[2] |
马 燕,吴丰昌,谭伟强,等.影响银淡水生物水质基准的环境因素分析[J]. 生态毒理学报, 2015,10(1):235-244.
|
[3] |
孟 伟,吴丰昌.水质基准的理论与方法学导论[M]. 北京:科学出版社, 2010.
|
[4] |
U S EPA. Quality criteria for water[R]. Washington, DC, USA:National Technical Information Service, 1976.
|
[5] |
Kooijman S. A safety factor for LC50 values allowing for differences in sensitivity among species[J]. Water Research, 1987,21(3):269-276.
|
[6] |
Posthuma L, Suter G, TP T. Species sensitivity distributions in ecotoxicology[M]. Lewis, Boca Raton, FL:CRC press, 2002.
|
[7] |
Van Vlaardingen P, Traas T, Wintersen A, et al. Etx2. 0. A program to calculate hazardous concentrations and fraction affected, based on normally-distributed toxicity data, RIVM report (and software)[R]. The Netherlands:National Institute for Public Health and the Environment, 2004.
|
[8] |
Pennington D W. Extrapolating ecotoxicological measures from small data sets[J]. Ecotoxicology and Environmental Safety, 2003,56(2):238-250.
|
[9] |
闫振广,孟 伟,刘征涛,等.辽河流域氨氮水质基准与应急标准探讨[J]. 中国环境科学, 2011,31(11):1829-1835.
|
[10] |
洪 鸣,王菊英,张志锋,等.海水中金属铅水质基准定值研究[J]. 中国环境科学, 2016,36(2):626-633.
|
[11] |
王 颖,冯承莲,黄文贤,等.物种敏感度分布的非参数核密度估计模型[J]. 生态毒理学报, 2015,10(1):215-224.
|
[12] |
Newman M C, Ownby D R, Mezin L C, et al. Applying species-sensitivity distributions in ecological risk assessment:assumptions of distribution type and sufficient numbers of species[J]. Environmental Toxicology and Chemistry, 2000,19(2):508- 515.
|
[13] |
陈波宇,郑斯瑞,牛希成,等.物种敏感度分布及其在生态毒理学中的应用[J]. 生态毒理学报, 2010,5(4):1673-5897.
|
[14] |
潘海涛. Bootstrap方法在非参数核估计中的研究与应用[J]. 统计与决策, 2011,(23):22-24.
|
[15] |
Rosenblatt M. Remarks on some nonparametric estimates of a density function[J]. The Annals of Mathematical Statistics, 1956,27(3):832-837.
|
[16] |
Wang Y, Wu F C, Giesy J P, et al. Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals[J]. Environmental Science and Pollution Research, 2015,22(18):13980-13989.
|
[17] |
Wang Y, Feng C, Liu Y, et al. Comparative study of species sensitivity distributions based on non-parametric kernel density estimation for some transition metals[J]. Environmental Pollution, 2017,221:343-350.
|
[18] |
Wu F C, Mu Y S, Chang H, et al. Predicting water quality criteria for protecting aquatic life from physicochemical properties of metals or metalloids[J]. Environmental Science & Technology, 2013,47(1):446-453.
|
[19] |
冯承莲,吴丰昌,赵晓丽,等.水质基准研究与进展[J]. 中国科学:地球科学, 2012,42(5):657-664.
|
[20] |
吴丰昌,冯承莲,张瑞卿,等.我国典型污染物水质基准研究[J]. 中国科学:地球科学, 2012,42(5):665-672.
|
[21] |
Solomon K, Giesy J, Jones P. Probabilistic risk assessment of agrochemicals in the environment[J]. Crop Protection, 2000, 19(8):649-655.
|
[22] |
Solomon K R, Baker D B, Richards R P, et al. Ecological risk assessment of atrazine in North American surface waters[J]. Environmental Toxicology and Chemistry, 1996,15(1):31-76.
|
[23] |
Giesy J P, Solomon K R, Coats J R, et al. Chlorpyrifos:ecological risk assessment in North American aquatic environments[M]. New York:Springer, 1999.
|
[24] |
Campbell K R, Bartell S M, Shaw J L. Characterizing aquatic ecological risks from pesticides using a diquat dibromide case study. II. Approaches using quotients and distributions[J]. Environmental Toxicology and Chemistry, 2000,19(3):760-774.
|
[25] |
TenBrook P L, Palumbo A J, Fojut T L, et al. The University of California-Davis Methodology for deriving aquatic life pesticide water quality criteria[J]. Reviews of Environmental Contamination and Toxicology, 2010:1-155.
|
[26] |
Vardy D W, Tompsett A R, Sigurdson J L, et al. Effects of subchronic exposure of early life stages of white sturgeon (Acipenser transmontanus) to copper, cadmium, and zinc[J]. Environmental Toxicology and Chemistry, 2011,30(11):2497- 2505.
|
[27] |
Parzen E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962:1065- 1076.
|
[28] |
吴喜之.非参数统计[M]. 北京:中国统计出版社, 1999.
|
[29] |
陈希孺,柴根象.非参数统计教程[M]. 上海:华东师范大学出版社, 1993.
|
[30] |
Prakasa Rao B. Nonparametric functional estimation[M]. New York:Academic Press, 1983.
|
[31] |
Epanechnikov V A. Non-parametric estimation of a multivariate probability density[J]. Theory of Probability & Its Applications, 1969,14(1):153-158.
|
[32] |
李竹渝,鲁万波,龚金国.经济,金融计量学中的非参数估计技术[M]. 北京:科学出版社, 2007.
|
[33] |
颜 伟,任洲洋,赵 霞,等.光伏电源输出功率的非参数核密度估计模型[J]. 电力系统自动化, 2013,37(10):35-40.
|
[34] |
Liu Y D, Wu F C, Mu Y S, et al. Setting water quality criteria in China:approaches for developing species sensitivity distributions for metals and metalloids[J]. Reviews of Environmental Contamination and Toxicology, 2014,230:35-57.
|
[35] |
Van Straalen N M, Denneman C A. Ecotoxicological evaluation of soil quality criteria[J]. Ecotoxicology and Environmental Safety, 1989,18(3):241-251.
|
[36] |
U.S.EPA. Methods/indicators for determining when metals are the cause of biological impairments of rivers and streams:species sensitivity distributions and chronic exposure- response relationships from laboratory data[R]. Cincinnati, OH, USA:Office of Research and Development, 2005.
|
[37] |
Van Sprang P A, Verdonck F A, Vanrolleghem P A, et al. Probabilistic environmental risk assessment of zinc in Dutch surface waters[J]. Environmental Toxicology and Chemistry, 2004,23(12):2993-3002.
|
[38] |
Grist E P, Leung K M, Wheeler J R, et al. Better bootstrap estimation of hazardous concentration thresholds for aquatic assemblages[J]. Environmental Toxicology and Chemistry, 2002, 21(7):1515-1524.
|
[39] |
Haynes W M. CRC handbook of chemistry and physics[M]. Lewis, Boca Raton, FL:CRC press, 2012.
|
[40] |
余德才,曹文娟,余旭东.原子核强度电势和原子价层电量对元素电负性的标度[J]. 物理化学学报, 2009,25(1):155-160.
|
[41] |
Walker J D, Enache M, Dearden J C. Quantitative cationic- activity relationships for predicting toxicity of metals[J]. Environmental Toxicology and Chemistry, 2003,22(8):1916- 1935.
|
[42] |
孔祥臻,何 伟,秦 宁,等.重金属对淡水生物生态风险的物种敏感性分布评估[J]. 中国环境科学, 2011,31(9):1555-1562.
|
[43] |
U.S.EPA. National Recommended Water Quality Criteria[R]. Washington, DC, USA:Office of Science and Technology, 2012.
|
[44] |
Brock T, Arts G H, Maltby L, et al. Aquatic risks of pesticides, ecological protection goals, and common aims in European Union legislation[J]. Integrated Environmental Assessment and Management, 2006,2(4):e20-e46.
|
|
|
|