|
|
Variation characteristics and health risk assessment of BTEX in Tianjin |
YAO Qing1,2, CAI Zi-ying1,2, MA Zhi-qiang3, HAN Gen-you4, LIU Jing-le1, HAN Su-qin1 |
1. Tianjin Environmental Meteorology Center, Tianjin 300074, China; 2. Tianjin Institute of Meteorological Science, Tianjin 300074, China; 3. Environmental Meteorology Forecast Center of Beijing-Tianjin-Hebei, Beijing 100089, China; 4. Beijing Saak-Mar Environmental Instrument Limited, Beijing 100094, China |
|
|
Abstract BTEX were measured by AMA GC5000 in Tianjin City from October 2012 to February 2013. The average concentration of BTEX was 40.02±23.66μg/m3 during the observation period. Toluene showed highest level among the BTEX, while o-xylene was the minimum. There was bimodal diurnal variation of BTEX, with peaks at early morning and late afternoon. The daily average of BTEX was 49.78±25.03μg/m3 during fog/haze period, compared with 28.57±15.18μg/m3 in non-fog/haze period. The ratio of B/T was 0.7 during non-fog/haze period, indicated BTEX mainly came from vehicle emissions. However, the ratio increased to 0.77 in fog/haze period, indicated industrial coal combustion could accelerate the air pollution. Toluene was the most important precursor for SOA among BTEX, while m, p-xylene took the second place. The averaged HI value was 0.455 during the observation period, with 0.578 in fog/haze day and 0.309 in non-fog/haze day, which was under the up limit of safety range recommended by US EPA. Nevertheless, the risk of cancer caused by benzene was 7.64×10-5, beyond the safety threshold of EPA, which should be concern.
|
Received: 24 February 2017
|
|
|
|
|
[1] |
Miri M, Shendi M R A, Ghaffari H R, et al. Investigation of outdoor BTEX:concentration, variations, sources, spatial distribution, and risk assessment[J]. Chemosphere, 2016,163:601-609.
|
[2] |
Wang Y S, Ren X Y, Ji D S, et al. Characterization of volatile organic compounds in the urban area of Beijing from 2000 to 2007[J]. Journal of Environmental Sciences, 2012,24(1):95-101.
|
[3] |
Zhang Y J, Mu Y J, Liu J F, et al. Levels, sources and health risks of carbonyls and BTEX in the ambient air of Beijing, China[J]. Journal of Environmental Sciences, 2012,24(1):124-130.
|
[4] |
Hoque R R, Khillare P S, Agarwal T, et al. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India[J]. Science of the Total Environment, 2008,392:30-40.
|
[5] |
Wu W J, Zhao B, Wang S X, et al. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China[J]. Journal of Environmental Sciences, 2017,53:234-237.
|
[6] |
朱少峰,黄晓锋,何凌燕,等.深圳大气VOCs浓度的变化特征与化学反应活性[J]. 中国环境科学, 2012,32(12):2140-2148.
|
[7] |
陈长虹,苏雷燕,王红丽,等.上海市城区VOCs的年变化特征及其关键活性组分[J]. 环境科学学报, 2012,32(2):367-376.
|
[8] |
林旭,朱彬,安俊琳,等.南京北郊VOCs对臭氧和二次有机气溶胶潜在贡献的研究[J]. 中国环境科学, 2015,35(4):976-986.
|
[9] |
吕子峰,郝吉明,段菁春,等.北京市夏季二次有机气溶胶生成潜势的估算[J]. 环境科学, 2009,30(4):969-975.
|
[10] |
王倩,王红丽,周东来,等.成都市夏季大气挥发性有机物污染及其对二次有机气溶胶生成的贡献[J]. 环境污染与防治, 2015,37(7):6-12.
|
[11] |
王倩,陈长虹,王红丽,等.上海市秋季大气VOCs对二次有机气溶胶的生成贡献及来源研究[J]. 环境科学, 2013,34(2):424-433.
|
[12] |
王扶潘,朱乔,冯凝,等.深圳大气中VOCs的二次有机气溶胶生成潜势[J]. 中国环境科学, 2014,34(10):2499-2457.
|
[13] |
马永亮,谭吉华,贺克斌,等.佛山灰霾期挥发性有机物的污染特征[J]. 环境科学, 2011,32(12):3549-3554.
|
[14] |
Sun J, Wu F K, Hu B, et al. VOC characteristics, emissions and contributions to SOA formation during haze episodes[J]. Atmospheric Environment, 2016,141:560-570.
|
[15] |
Grosjean D. In situ organic aerosol formation during a smog episode:estimated production and chemical functionality[J]. Atmos. Environ., Part A, General Topics, 1992,26(6):953-963.
|
[16] |
Grosjean D, Seinfeld J H. Parameterization of the formation potential of secondary organic aerosols[J]. Atmospheric Environment, 1989,23(8):1733-1747.
|
[17] |
陈丹,张志娟,高飞龙,等.珠江三角洲某炼油厂苯系物的健康风险评价[J]. 中国环境科学, 2017,37(5):1961-1970.
|
[18] |
张玉欣,安俊琳,林旭,等.南京北郊冬季挥发性有机物来源解析及苯系物健康评估[J]. 环境科学, 2017,38(1):1-12.
|
[19] |
夏芬美,李红,李金娟,等.北京市东北城区夏季环境空气中苯系物的污染特征与健康风险评价[J]. 生态毒理学报, 2014, 9(6):1041-1052.
|
[20] |
Li Lei, Li Hong, Zhang Xinmin, et al. Pollution characteristics and health risk assessment of benzene homologues in the northeastern urban area of Beijing, China[J]. Journal of Environmental Sciences, 2014,26:214-223.
|
[21] |
赵若杰,史建武,韩斌,等.中国北方典型城市空气中苯系物的污染特征[J]. 环境化学, 2012,31(6):777-782.
|
[22] |
卢学强,韩萌,冉靓,等.天津中心城区夏季非甲烷有机化合物组成特征及其臭氧产生潜力分析[J]. 环境科学学报, 2011, 31(2):373-380.
|
[23] |
宁晓宇,王亘,刘博.天津市西南部苯系物浓度季节及空间变化特征[J]. 环境科学研究, 2012,25(6):639-644.
|
[24] |
姚青,韩素芹,蔡子颖,等.2012年夏季天津城区BTEX污染特征与臭氧潜势分析[J]. 中国环境科学, 2013,33(5):793-798.
|
[25] |
于艳,王秀艳,杨文.天津市机动车二次有机气溶胶生成潜势的估算[J]. 中国环境科学, 2015,35(2):381-386.
|
[26] |
姚青,蔡子颖,韩素芹,等.天津冬季相对湿度对气溶胶浓度谱分布和大气能见度的影响[J]. 中国环境科学, 2014,34(3):596-603.
|
[27] |
王跃思,姚利,王莉莉,等.2013年元月我国中东部地区强霾污染成因分析[J]. 中国科学:地球科学, 2014,44(1):15-26.
|
[28] |
靳军莉,颜鹏,马志强,等.北京及周边地区2013年1~3月PM2.5变化特征[J]. 应用气象学报, 2014,25(6):690-700.
|
[29] |
曹文文,史建武,韩斌,等.我国北方典型城市大气中VOCs的组成及分布特征[J]. 中国环境科学, 2012,32(2):200-206.
|
[30] |
孙杰,王跃思,吴方堃.北京市BTEX的污染现状与变化规律分析[J]. 环境科学, 2011,32(12):3531-3536.
|
[31] |
王宇亮,张玉洁,刘俊峰,等.2009年北京市苯系物污染水平和变化特征[J]. 环境化学, 2011,30(2):412-417.
|
[32] |
刘全,王跃思,吴方堃,等.长沙大气中VOCs研究[J]. 环境科学, 2011,32(12):3543-3548.
|
[33] |
张玉欣,安俊琳,王建宇,等.南京北郊大气BTEX变化特征和健康风险评估[J]. 环境科学, 2017,38(2):453-460.
|
[34] |
Andreae M O, Merlet P. Emissions of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001,15(4):955-966.
|
[35] |
Moreria Dos Santos C Y, De Almeida Azevedo D, De Aquino Neto F R.Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004,38(9):1247-1257.
|
[36] |
陈文泰,邵敏,袁斌,等.大气中挥发性有机物(VOCs)对二次有机气溶胶(SOA)生成贡献的参数化估算[J]. 环境科学学报, 2013,33(1):163-172.
|
[37] |
杨笑笑,汤莉莉,胡丙鑫,等.南京城区夏季大气VOCs的来源及对SOA的生成研究-以亚青和青奥期间为例[J]. 中国环境科学, 2016,36(10):2896-2902.
|
[38] |
崔虎雄.上海市春季臭氧和二次有机气溶胶生成潜势的估算[J]. 环境科学, 2013,34(12):4529-4534.
|
[39] |
US EPA 2009. Office of superfund remediation and technology Innovation[R]. EPA-540-R-070-002, Washington,DC:US Environmental Protection Agency.
|
[40] |
刘丹,解强,张鑫,等.北京冬季雾霾频发期VOCs源解析及健康风险评级[J]. 环境科学, 2016,37(10):3693-3701.
|
|
|
|