|
|
Historical reconstruction and source identification of sediment nutrient elements in the Changhu Reservoir, Wengjiang River |
ZENG Hong-ping1,2, GAO Lei2, CHEN Jian-yao2,3, ZHANG Kai2, JIANG Tao2, LI Kun2 |
1. Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China;
2. School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510275, China;
3. Key Laboratory of Urbanization and Geographical Environment Simulation of Guangdong Province, Guangzhou 510275, China |
|
|
Abstract To investigate the impacts of urbanization processes, water conservancy project and human activities on the evolution trend of river water environment, sediment core (CH1) was collected in the Changhu Reservoir, Wengjiang River basin, in September 2015. Measurements of sediment unsupported 210Pb (210Pbex) activity, TOC, TN, TP content, δ13C and particle size were conducted. The results showed that the sedimentary record of CH1 was obtained in about 58years. The average contents of TOC, TN and TP in the sediment core were 1.07% (range:0.65%~1.66%), 0.12% (0.08%~0.20%), 438.00mg/kg (294.74~675.44mg/kg). Vertical distribution characteristics of TOC, TN and TP in the sediment core of the reservoir showed that before 1957, the TN, TP and TOC content of sediment core exhibited a slowly increasing trend, the content initially increased and then decreased in 1957 to 1991, and generally increased from 1991 to 2015. However, the storm flood occurred in 1994 significantly changed the sediment particle composition, thus decreasing TOC, TN and TP content. In combination with characteristics of C/N and δ13C, the source of organic matter was mainly identified as the mixture of terrestrial and aquatic sources, and the dam construction mainly resulted in the input of terrigenous organic matter in the reservoir area.
|
Received: 08 February 2017
|
|
|
|
|
[1] |
于宇,宋金明,李学刚,等.沉积物生源要素对水体生态环境变化的指示意义[J]. 生态学报, 2012,32(5):1623-1632.
|
[2] |
丰茂武,吴云海,冯仕训,等.不同氮磷比对藻类生长的影响[J]. 生态环境学报, 2008,17(5):1759-1763.
|
[3] |
李建平,吴立波,戴永康,等.不同氮磷比对淡水藻类生长的影响及水环境因子的变化[J]. 生态环境学报, 2007,16(2):342-346.
|
[4] |
梁止水,邓琳,高海鹰,等.南淝河底泥中氮磷空间分布规律及污染评价[J]. 环境工程, 2013,(s1):124-127.
|
[5] |
曲久辉.我国水体复合污染与控制[J]. 科学对社会的影响, 2000,1(1):35-39.
|
[6] |
Frink C R. Nutrient budget:rational analysis of eutrophication in a Connecticut lake.[J]. Environmental Science & Technology, 1967,1(5):425-428.
|
[7] |
金相灿.沉积物污染化学[M]. 北京:中国环境科学出版社, 1992:234-256.
|
[8] |
刘鸿亮.湖泊富营养化调查规范[M]. 北京:中国环境科学出版社, 1987.
|
[9] |
杨丽原,沈吉,刘恩峰,等.南四湖现代沉积物中营养元素分布特征[J]. 湖泊科学, 2007,19(4):390-396.
|
[10] |
杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属和营养元素的多元分析[J]. 中国环境科学, 2003,23(2):206-209.
|
[11] |
王华新.长江口环境变化及表层沉积物中总有机碳、总氮的时空分布[D]. 青岛:中国科学院研究生院(海洋研究所), 2010.
|
[12] |
Vaalgamaa S. The effect of urbanisation on Laajalahti Bay, Helsinki City, as reflected by sediment geochemistry[J]. Marine Pollution Bulletin, 2004,48(7):650-662.
|
[13] |
Simms A D, Woodroffe C, Jones B G, et al. Use of 210Pb and 137Cs to simultaneously constrain ages and sources of post-dam sediments in the Cordeaux reservoir, Sydney, Australia[J]. Journal of Environmental Radioactivity, 2008,99(7):1111-1121.
|
[14] |
魏岚,刘传平,邹献中,等.广东省不同水库底泥理化性质对内源氮磷释放影响[J]. 生态环境学报, 2012,(7):1304-1310.
|
[15] |
黄小平,田磊,彭勃,等.珠江口海域环境污染研究进展[J]. 热带海洋学报, 2010,29(1):1-7.
|
[16] |
胡国成,许振成,赵学敏,等.高州水库表层沉积物重金属污染特征及生态风险评价[J]. 环境科学研究, 2011,24(8):949-957.
|
[17] |
Kaushik A, Kansal A, Santosh M, et al. Heavy metal contamination of river Yamuna, Haryana, India:assessment by metal enrichment factor of the sediments[J]. Journal of Hazardous Materials, 2009,164(1):265-270.
|
[18] |
Burford M A, Green S A, Cook A J, et al. Sources and fate of nutrients in a subtropical reservoir[J]. Aquatic Sciences, 2012, 74(1):179-190.
|
[19] |
钱君龙.用过硫酸盐氧化的方法同时测定水中的总氮和总磷[J]. 环境科学与管理, 1985,28(2):88-94.
|
[20] |
Appleby P G. Chronostratigraphic Techniques in Recent Sediments[M]//Tracking Environmental Change Using Lake Sediments. Springer Netherlands, 2002:171-203.
|
[21] |
Xia P, Meng X, Yin P, et al. Eighty-year sedimentary record of heavy metal inputs in the intertidal sediments from the Nanliu River estuary, Beibu Gulf of South China Sea[J]. Environmental Pollution, 2011,159(1):92-99.
|
[22] |
Abbadie L, Degrange V, Grayston S J, et al. Effects of Grazing on Microbial Functional Groups Involved in Soil N Dynamics[J]. Ecological Monographs, 2005,75(1):65-80.
|
[23] |
Patra A K, Le R X, Grayston S J, et al. Unraveling the effects of management regime and plant species on soil organic carbon and microbial phospholipid fatty acid profiles in grassland soils[J]. Bioresource Technology, 2008,99(9):3545-3551.
|
[24] |
Karlsson K, Viklander M, Scholes L, et al. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks[J]. Journal of Hazardous Materials, 2010,178(1):612-618.
|
[25] |
许小玲.滃江流域"94.6""10.5"暴雨洪水对比分析[J]. 水科学与工程技术, 2012,(4):30-32.
|
[26] |
陈敬安,万国江,张峰,等.不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例[J]. 中国科学, 2003,33(6):563-568.
|
[27] |
广东·翁源[N/OL]. http://www.wengyuan.gov.cn/wygov/.
|
[28] |
Johnson T C. Sedimentation in large lakes. Annual Review of Earth and Planetary Sciences, 1984,12:179-204.
|
[29] |
张湛彬,刘杰辉,张国华,等."大跃进"和三年困难时期的中国[M]. 北京:中国商业出版社, 2001.
|
[30] |
刘婷.制度变迁对广东省工业经济增长影响的实证分析[D]. 广州:暨南大学, 2010.
|
[31] |
Gao G L, Ding G D, Zhao Y Y, et al. Fractal approach to estimating changes in soil properties following the establishment of Caragana korshinskii, shelterbelts in Ningxia, NW China[J]. Ecological Indicators, 2014,43:236-243.
|
[32] |
Rumpel C, Eusterhues K, Kogelknabner I. Location and chemical composition of stabilized organic carbon in topsoil and subsoil horizons of two acid forest soils[J]. Soil Biology & Biochemistry, 2004,36(1):177-190.
|
[33] |
Carter M R, Angers D A, Gregorich E G, et al. Characterizing organic matter retention for surface soils in eastern Canada using density and particle size fractions[J]. Canadian Journal of Soil Science, 2003,83(1):11-23.
|
[34] |
Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 1994,144(3/4):289-302.
|
[35] |
Chen G C, He Z L, Huang C Y. Microbial biomass phosphorus and its significance in predicting phosphorus availability in red soils[J]. Communications in Soil Science and Plant Analysis, 2000,31(5/6):655-667.
|
[36] |
Han X Z, Tang C, Song C Y, et al. Phosphorus characteristics correlate with soil fertility of albic luvisols[J]. Plant and Soil, 2007,270(1):47-56.
|
[37] |
Matula J. Barley response to the soil reserve of sulphur and ammonium sulphate in short-term experiments under controlled conditions of cultivation[J]. Plant, Soil and Environment-UZPI (Czech Republic), 2004,50(6):235-242.
|
[38] |
Turner B L, Haygarth P M. Changes in Bicarbonate-extractable Inorganic and Organic Phosphorus by Drying Pasture Soils[J]. Soil Science Society of America Journal, 2003,67(1):344.
|
[39] |
Wang J, Solomon D, Lehmann J, et al. Soil organic sulfur forms and dynamics in the Great Plains of North America as influenced by long-term cultivation and climate[J]. Geoderma, 2006,133(3):160-172.
|
[40] |
Md. Akhter Hossain Chowdhury, Kenji Kouno, Tadao Ando. Correlation among microbial biomass s, soil properties, and other biomass nutrients[J]. Soil Science and Plant Nutrition, 1999, 45(1):175-186.
|
[41] |
Gharmakher H N, Machet J M, Beaudoin N, et al. Estimation of sulfur mineralization and relationships with nitrogen and carbon in soils[J]. Biology and Fertility of Soils, 2009,45(3):297-304.
|
[42] |
Zhao Y, Wu F, Fang X, et al. Topsoil C/N ratios in the Qilian Mountains area:Implications for the use of subaqueous sediment C/N ratios in paleo-environmental reconstructions to indicate organic sources[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015,426:1-9.
|
[43] |
Park R, Epstein S. Carbon isotope fractionation during photosynthesis[J]. Geochimica Et Cosmochimica Acta, 1960, 21(21):110-126.
|
[44] |
王秋良,谢远云,梅惠.湖泊沉积物中有机碳同位素特征及其古气候环境意义[J]. 安全与环境工程, 2003,10(4):17-21.
|
[45] |
Diefendorf A F, Mueller K E, Wing S L, et al. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 2010,107(13):5738-43.
|
[46] |
Smith B N, Epstein S. Two Categories of 13C/12C Ratios for Higher Plants[J]. Plant Physiology, 1971,47(3):380.
|
[47] |
Andrews J, Greenaway A, Dennis P. Combined carbon isotopes and C/N ratios as indicators of source and fate or organic matter in a poorly-flushed tropical estuary, Hunts Bay, Kingston, Jamaica[J]. Estuarine Coastal & Shelf Science, 1998,46(5):743-756.
|
[48] |
Corinne G, Robert D, Georges K, et al. Long-term greenhouse gas emissions from hydroelectric reservoirs in tropical forest regions[J]. Global Biogeochemical Cycles, 1999,13(2):503-517.
|
[49] |
Alexis D J, Gwenaël A, Isabelle B, et al. A multi-tracers analysis of sources and transfers of particulate organic matter in a tropical reservoir (Petit Saut, French Guiana)[J]. River Research & Applications, 2009,25(3):253-271.
|
[50] |
《翁源县志·大事记》[M/OL]. http://www.gd-info.gov.cn/books/dtree/showbook.jsp?stype=v&paths=16306&siteid=wyx&sitename=翁源县地情网.
|
|
|
|