|
|
Ensemble modeling methods for remote sensing retrieval of water quality parameters in inland wate |
CAO Yin1,2, YE Yun-tao2, ZHAO Hong-li2, JIANG Yun-zhong2, WANG Hao1,2, WANG Jun-feng1 |
1. State Environmental Protection Engineering Center for Pollution Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China;
2. State Key Laboratory of Smimulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China |
|
|
Abstract Based on the measured hyperspectral data and concentration of chlorophyll a, total suspended matter (TSM) and turbidity obtained during June 11 to 13, 2015 in Weishan Lake, empirical models and PSO-SVM model were established to retrieve the three water quality parameters. Meanwhile, the performance of those models was evaluated to determine the models applied to ensemble modeling. The ensemble models containing EW-CM, SPA-CM and BMA were established to retrieve the three water quality parameters by using deterministic ensemble method and probabilistic ensemble method. The deterministic and probabilistic ensemble method was based on the entropy weight method along with pair analysis method and Bayesian averaging method, respectively. Bayesian averaging method was employed to obtain the retrieval uncertainty range of the three water quality parameters by using the single model and the BMA ensemble model, and the retrieval uncertainty range of these models was compared. These results demonstrated that (1) the accuracy of SPA-CM model was better than that of EW-CM model in deterministic ensemble models; (2) the modeling accuracy of BMA probabilistic ensemble model was better than that of SPA-CM and EW-CM model; the verification accuracy of BMA probabilistic ensemble model was similar with that of EW-CM model but slightly lower than that of the SPA-CM model; (3) Probabilistic ensemble modeling could obtain the retrieval uncertainty range of water quality parameters by using the ensemble model and the single model; (4) The deterministic and probabilistic ensemble model associated with the single model information showed a higher modeling and verification accuracy, which could be used to reduce the uncertainty of water quality parameters retrieval compared with single model and promote the retrieval accuracy of water quality parameters in a manner.
|
Received: 23 March 2017
|
|
|
|
|
[1] |
黄昌春,李云梅,徐良将,等.内陆水体叶绿素反演模型普适性及其影响因素研究[J]. 环境科学, 2013,34(2):525-531.
|
[2] |
冯奇,程学军,沈欣,等.利用Landsat 8OLI进行汉江下游水体浊度反演[J]. 武汉大学学报:信息科学版, 2017,(5):643-647.
|
[3] |
Tian L Q, Chen X L, Li W B, et al. Retrieval of total suspended matter concentration from Gaofen-1Wide Field Imager (WFI) multispectral imagery with the assistance of Terra MODIS in turbid water-case in Deep Bay[J]. International Journal of Remote Sensing, 2016,37(14):3400-3413.
|
[4] |
Tian H, Cao C, Xu M, et al. Estimation of chlorophyll-a concentration in coastal waters with HJ-1A HSI data using a three-band bio-optical model and validation[J]. International Journal of Remote Sensing, 2014,35(16):5984-6003.
|
[5] |
包颖,田庆久,陈旻,等.基于GOCI影像分类的太湖水体叶绿素a浓度日变化分析[J]. 光谱学与光谱分析, 2016,36(8):2562-2567.
|
[6] |
Ryan K, Ali K. Application of a partial least-squares regression model to retrieve chlorophyll-a[J]. Ocean Science Journal, 2016,51(2):209-221.
|
[7] |
旷达,韩秀珍,刘翔,等.基于环境一号卫星的太湖叶绿素a浓度提取[J]. 中国环境科学, 2010,30(9):1268-1273.
|
[8] |
Sun D Y, Li Y M, Wang Q. A unified model for remotely estimating chlorophyll a in Lake Taihu, China, based on SVM and in situ, hyperspectral data[J]. Geoscience & Remote Sensing IEEE Transactions on, 2009,47(8):2957-2965.
|
[9] |
朱云芳,朱利,李家国,等.基于GF-1WFV影像和BP神经网络的太湖叶绿素a反演[J]. 环境科学学报, 2017,37(1):130-137.
|
[10] |
袁喆,严登华,杨志勇,等.集合建模在径流模拟和预测中的应用[J]. 水利学报, 2014,45(3):351-359.
|
[11] |
张凤太,苏维词,周继霞.基于熵权灰色关联分析的城市生态安全评价[J]. 生态学杂志, 2008,27(7):1249-1254.
|
[12] |
王文圣,李跃清,金菊良.基于集对原理的水文相关分析[J]. 四川大学学报:工程科学版, 2009,41(2):1-5.
|
[13] |
金菊良,魏一鸣,丁晶.用基于加速遗传算法的组合预测模型预测海洋冰情[J]. 系统管理学报, 2003,12(4):367-370.
|
[14] |
吴静敏,左洪福,陈勇.基于免疫粒子群算法的组合预测方法[J]. 系统管理学报, 2006,15(3):229-233.
|
[15] |
张青.基于神经网络最优组合预测方法的应用研究[J]. 系统工程理论与实践, 2001,21(9):90-93.
|
[16] |
李渊,李云梅,吕恒,等.基于数据同化的太湖叶绿素多模型协同反演[J]. 环境科学, 2014,35(9):3389-3396.
|
[17] |
董磊华,熊立华,万民.基于贝叶斯模型加权平均方法的水文模型不确定性分析[J]. 水利学报, 2011,42(9):1065-1074.
|
[18] |
王斌,张洪波,辛琛,等.基于贝叶斯模型加权平均法的径流序列高频分量预测研究[J]. 水力发电学报, 2016,35(5):75-83.
|
[19] |
Raftery A E, Gneiting T, Balabdaoui F, et al. Using Bayesian model averaging to calibrate forecast ensembles[J]. Monthly Weather Review, 2005,113(5):1155-1174.
|
[20] |
Mueller, J.L., Fargion, G.S., Mcclain, C.R., et al. Ocean optics protocols for satellite ocean color sensor validation, Revision 4, Volume Ⅲ:radiometric measurements and data analysis protocols[R]. Greenbet, Maryland:NASA Goddard Space Flight Center, 2003.
|
[21] |
唐军武,田国良,汪小勇,等.水体光谱测量与分析I:水面以上测量法[J]. 遥感学报, 2004,8(1):37-44.
|
[22] |
GB11901-89水质悬浮物的测定重量法[S].
|
[23] |
Giorgio D, Gitelson A A, Rundquist D C. Towards a unified approach for remote estimation of chlorophyll-a in both terrestrial vegetation and turbid productive waters[J]. Geophysical Research Letters, 2003,30(18):159-171.
|
[24] |
Le C F, Li Y M, Yong Z, et al. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes:the case of Taihu Lake, China[J]. Remote Sensing of Environment, 2009, 113(6):1175-1182.
|
[25] |
黎夏.悬浮泥沙遥感定量的统一模式及其在珠江口中的应用[J]. 遥感学报, 1992,7(2):106-114.
|
[26] |
米晨,汤秀芬,魏凤兰.基于Haar小波变换的图像分解与重构[J]. 实验室研究与探索, 2003,22(2):78-81.
|
[27] |
曹引,冶运涛,赵红莉,等.基于离散粒子群和偏最小二乘的湖库型水源地水体悬浮物浓度和浊度遥感反演方法[J]. 水力发电学报, 2015,34(11):77-87.
|
[28] |
Bazi Y, Melgani F. Semi-supervised PSO-SVM regression for biophysical parameter estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007,45(6):1887-1895.
|
|
|
|