|
|
Response characteristics of oxidative stress biomarkers of Polymesoda erosa to exposure of SCCPs |
XING Yong-ze1,2,3, NONG Ying4, LU Yu-zhe4, YANG Ming-liu1, YAN Bing1 |
1. Guangxi Key Laboratory of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536007, China;
2. Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China;
3. College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
4. College of Animal Science and Technology, Guangxi University, Nanning 530005, China |
|
|
Abstract This study aimed to investigate the response characteristics of 4 oxidative stress biomarkers, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and the level of malondialdehyde (MDA) in blood and gill tissue of the Polymesoda erosa, under the condition of exposure to short-chain chlorinated paraffins (SCCPs) at different concentrations or with different exposure times. The results showed that SOD and GST activities in the blood and gill tissue increased along with the increase of exposure time under low stress (0.5mg/L, 1mg/L) or medium stress (5mg/L) of SCCPs. However, under high stress (10mg/L, 20mg/L), the activities of SOD and GST were high at the beginning of SCCPs exposure and then decreased gradually. CAT exhibited the highest activity at the initial stage (1d) of SCCPs exposure, and then its activity decreased gradually and finally was completely inhibited. In low stress group, the level of MDA appeared an up-down-up trend, however, in medium and high stress groups, the level of MDA increased continuously with the increase of exposure time. Taken together, the antioxidant system of the Polymesoda erosa could efficiently response to SCCPs when the concentration of SCCPs was lower than 5mg/L. However, when the concentration of SCCPs was higher than 5mg/L, after an initial emergency response, the antioxidant system was destroyed with the extending of exposure time. In addition, this study also explored the feasibility of using Polymesoda erosa as a bio-indicator for environment monitoring.
|
Received: 20 March 2017
|
|
|
|
|
[1] |
Guo Z Y, Zhu H Y, Liang X G. Entransy:a physical quantity describing heat transfer ability[J]. International Journal of Heat and Mass Transfer, 2007,50(13):2545-2556.
|
[2] |
刘丽华,马万里,刘丽艳,等.短链氯化石蜡C10(50.2%Cl)对斑马鱼胚胎的发育毒性[J]. 哈尔滨工业大学学报, 2016,4(8):127-140.
|
[3] |
石萱.氯化石蜡如何破困局[N]. 中国化工报, 2015-4-2(3).
|
[4] |
沈亮,罗平,张宇峰.我国短链氯化石蜡产业现状及环境行为研究[J]. 现代化工, 2016,36(3):1-6.
|
[5] |
Coelhan M. Levels of chlorinated paraffins in water[J]. Clean-Soil Air Water, 2010,38(5/6):452-456.
|
[6] |
Nicholls C R, Allchin C R, Law R J. Levels of short and medium chain length polychlorinated n-alkanes in environmental samples from selected industrial areas in England and Wales[J]. Environmental Pollution, 2001,114(4):415-430.
|
[7] |
Zeng L X, Wang T, Han W Y, et al. Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands[J]. Environmental Science & Technology, 2011,45(6):2100-2106.
|
[8] |
Iozza S, Müller C E, Schmid P, et al. Historical profiles of chlorinated paraffins and polychlorinated biphenyls in a dated sediment core from Lake Thun (Switzerland)[J]. Environmental Science & Technology, 2008,42(4):1045-1050.
|
[9] |
Tomy G T, Stern G A, Lockhart W L, et al. Occurrence of C10-C13 polychlorinated n-alkanes in Canadian midlatitude and arctic lake sediments[J]. Environmental Science & Technology, 1999, 33(17):2858-2863.
|
[10] |
Barber J L, Sweetman A J, Thomas G O, et al. Spatial and temporal variability in air concentrations of short chain (C10-C13) and medium-chain (C14-C17) chlorinated n-alkanes measured in the UK atmosphere[J]. Environmental Science & Technology, 2005,39(12):4407-4415.
|
[11] |
Peters A J, Tomy G T, Jones K C, et al. Occurrence of C10-C13 polychlorinated n-alkanes in the atmosphere of the United Kingdom[J]. Atmospheric Environment, 2000,34(34):3085-3090.
|
[12] |
Tomy G T, Muir D C G, Stern G A, et al. Levels of C10-C13 polychloro-n-alkanes in marine mammals from the Arctic and the St. Lawrence River estuary[J]. Environmental Science & Technology, 2000,34(9):1615-1619.
|
[13] |
Marvin C H, Painter S, Tomy G T, et al. Spatial and temporal trends in short-chain chlorinated paraffins in Lake Ontario sediments[J]. Environmental Science & Technology, 2003,37(20):4561-4568.
|
[14] |
Castells P, Parera J, Santos F J, et al. Occurrence of polychlorinated naphthalenes, polychlorinated biphenyls and short-chain chlorinated paraffins in marine sediments from Barcelona (Spain)[J]. Chemosphere, 2008,70(9):1552-1562.
|
[15] |
Borgen A R, Schlabach M, Mariussen E. Screening of chlorinated paraffins in Norway[J]. Organohalogen Compounds, 2003,60:331-334.
|
[16] |
Pribylova P, Klanova J, Holoubek I. Screening of short-and medium-chain chlorinated paraffins in selected riverine sediments and sludge from the Czech Republic[J]. Environmental pollution, 2006,144(1):248-254.
|
[17] |
Iino F, Takasuga T, Senthilkumar K, et al. Risk assessment of short-chain chlorinated paraffins in Japan based on the first market basket study and species sensitivity distributions[J]. Environmental Science & Technology, 2005,39(1):859-866.
|
[18] |
Chen M Y, LUO X J, Zhang X L, et al. Chlorinated paraffins in sediments from the pearl River Delta. South China:spatial and temporal distributions and implication for processes[J]. Environmental Science & Technology, 2011,45(23):9936-9943.
|
[19] |
陈晨,马新东,国文,等.辽河口海域短链氯化石蜡污染特征及生物富集[J]. 科学通报, 2014,59(7):578-585.
|
[20] |
Zeng L X, Zhao Z S, Li H J, et al. Distribution of short chain chlorinated paraffins in marine sediments of the East China Sea:Influencing factors, transport and implications[J]. Environmental Science Technology, 2012,46(18):9898-9906.
|
[21] |
Zeng L X, Wang T, Wang P, et al. Distribution and trophic transfer of short-chain chlorinated paraffins in an aquatic ecosystem receiving effluents from a sewage treatment plant[J]. Environmental Science & Technology, 2011,45(13):5529-5535.
|
[22] |
于国龙.海洋环境中短链氯化石蜡的分析方法及应用研究[D]. 大连:大连海事大学, 2012.
|
[23] |
Ma X D, Zhang H, Wang Z, et al. Bioacumulation and trophic transfer of short chain chlorinated paraffins in a marine food web from the Liaodog Bay, north China[J]. Environmental Science & Technology, 2014,48(10):5964-5971.
|
[24] |
Nilsen O G, Toftgard R, Glaumann H, et al. Effects of chlorinated paraffins on rat liver microsomal activites and morphology[J]. Archives of Toxicology, 1981,49(1):1-13.
|
[25] |
李勋,刘钰晨,陈敏杰.短链氯化石蜡急性暴露对SD雄性大鼠的组织病理学影响[J]. 江汉大学学报, 2013,(41):5:20-25.
|
[26] |
Madeley J R, Maddock, B G. Toxicity of a chlorinated paraffin to rainbow trout over 60days. Chlorinated paraffin:52% chlorination of intermediate chain length n-paraffins[R]. Brixham:Imperial Chemical Industries Ltd, Brixham Laboratory, 1983c.
|
[27] |
Thompson R S, Madeley J R. The acute and chronic toxicity of a chlorinated paraffin to Daphnia magna[R]. Devon:Imperial Chemical Industries PLC, 1983.
|
[28] |
Thompson R S, Madeley J R. The acute and chronic toxicity of a chlorinated paraffin to the mysid shrimp (Mysidopsis bahia)[R]. Devon:Imperial Chemical Industries PLC, 1983.
|
[29] |
Brown D, Thompson R S. Phthalates and the aquatic environment:PartⅡThe bioconcentration and depuration of di-2-ethyl-hexyl phthalate (dehp) and di-isodecyl phthalate (didp) in mussel (mytilus-edulis)[J]. Chemosphere, 1982,11(4):427-435.
|
[30] |
任立英,陈小刚,张慧,等.羟胺发色法测定超氧化物歧化酶[J]. 临床检验杂志, 1993,11(4):185-186.
|
[31] |
刘砚韬,王振伟,张伶俐.过氧化氢酶活性测定的新方法[J]. 华西药学杂志, 2013,28(4):403-405.
|
[32] |
庞战军.自由基医学研究方法[M]. 北京:人民卫生出版社, 2000:147-202.
|
[33] |
黄虹.血清脂质过氧化代谢产物丙二醛测定方法的改进[J]. 镇江医学院学报, 1999,9(3):457-458.
|
[34] |
Smith P K, Krohn R I, Hermanson G T, et al. Measurement of protein using bichinchoninic acid[J]. Analytical Biochemistry, 1985,150(1):76-85.
|
[35] |
巩秀玉.壬基酚对波纹巴非蛤和菲律宾蛤仔的毒性效应[D]. 上海:上海海洋大学, 2012.
|
[36] |
李莹.三种典型有机污染物对鲫鱼抗氧化防御系统影响的研究[D]. 南京:南京大学, 2013.
|
[37] |
董学兴,吕林兰,吕富等.17β-雌二醇对双齿围沙蚕幼虫SOD、CAT和GST活性的影响[J]. 南方水产科学, 2014,10(6):83-87.
|
[38] |
穆希岩,黄瑛,沈公铭,等.苯醚甲环唑对斑马鱼抗氧化酶的影响[J]. 中国环境科学, 2016,36(4):1242-1249.
|
[39] |
赖廷和,何斌源,范航清等.重金属Cd胁迫对红树蚬的抗氧化酶、消化酶活性和MDA含量的影响[J]. 生态学报, 2011, 31(11):3044-3053.
|
[40] |
Peters L D, Porte C, Albaiges J, et al. 7-Ethoxyresorufin O-deethylase (EROD) and antioxidant enzyme activities in larvae of Sardine (Sardina pilchardus) from the north coast of Spain[J]. Marine Pollution Bulletion, 1994,28(5):299-304.
|
[41] |
Ottaviani E, Franceschi C. The invertebrate phagocytic immunocyte:clues to a common evolution of immune and neuroendocrine systems[J]. Immunology Today, 1997,18(4):169-174.
|
[42] |
陈慕雁.应激激素体外诱导对栉孔扇贝血细胞活性的影响[D]. 青岛:中国海洋大学, 2007.
|
[43] |
Bebianno M J, Serafim A, Camus L, et al. Antioxidant systems and lipid peroxidation in Bathymodiolus azoricus from MidAtlantic Ridge hydrothermal vent fields[J]. Aquatic Toxicology, 2005,75(4):354-373.
|
[44] |
江小桃.大亚湾养殖水域底栖生物生态修复技术的研究[D]. 广州:中国科学院南海海洋研究所, 2011.
|
[45] |
何斌源,戴培建,范航清.广西英罗港红树林沼泽沉积物和大型底栖动物中重金属含量的研究[J]. 海洋环境科学, 1996,15(1):35-41.
|
[46] |
莫祖英.多氯联苯(PCBs)胁迫下红树蚬转录组的初步研究[D]. 桂林:广西师范大学, 2015.
|
[47] |
王瑁,高雪芹,丁弈朋,等.海南清澜港不同栖息位置红树林软体动物的食物来源[J]. 湿地科学, 2015,13(2):171-174.
|
[48] |
陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D]. 厦门:厦门大学, 2002.
|
[49] |
张军.典型红树林湿地中多环芳烃的含量、来源和迁移研究[D]. 厦门:厦门大学, 2006.
|
[50] |
周浩郎,张俊杰,邢永泽,等.广西红树蚬的分布特征及影响因素分析[J]. 广西科学, 2014,21(2):147-152.
|
[1] |
ZHANG Yu, XU Peng-jun, ZHAO Hu, GAO Yuan, YANG Wen-long, ZHANG Li-fei, LIU Ai-min, HUANG Ye-ru, LI Xiao-xiu. Fingerprint patterns of SCCP and MCCP homologues in chlorinated paraffin products[J]. CHINA ENVIRONMENTAL SCIENCECE, 2019, 39(3): 1208-1216. |
|
|
|
|