|
|
Analysis of the removal and oxidation kinetics of high-iron manganese and ammonia nitrogen from groundwater |
LI Dong1, CAO Rui-hua1, Zeng Hui-ping1, ZHANG Jie1,2 |
1. Key Laboratory of Beijing Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China;
2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China |
|
|
Abstract Pilot-scale bio-filters were constructed to removal of high-iron, manganese and ammonia nitrogen (8~10℃, TFe 6~14mg/L, Mn 0.8~1.5mg/L, NH4+-N 2.0~3.0mg/L) from groundwater and the oxidation kinetics was analyzed. The results showed that Aeration and Filter process and Aeration and Double Filtration process failed due to lack of dissolved oxygen (DO). Biological Aerated Filter was the worst process due to aeration on the water flow turbulence; Biological Aerated Filter and Filtration process was successful, However, the filter rate was only 6.0m/h; Double Aeration and Double Filtration (DADF) was the best process, which was successful to removal of high-iron manganese and ammonia nitrogen from groundwater (8~10℃, TFe 17.66mg/L, Mn 1.71mg/L, NH4+-N 3.37mg/L), and the maximum filter rate of the first stage and the second stage were 13.25m/h and 12.75m/h. Moreover, which also could be applied to the purification of low-temperature groundwater (5~6℃, TFe 9.72mg/L, Mn 3.29mg/L, NH4+-N 3.44mg/L), and the maximum filter rate of the first stage and the second stage were 10.0m/h and 8.0m/h. The Oxidation kinetics demonstrated that, iron was oxidized and removed followed the first-order chemical oxidation kinetics, and the oxidation kinetics constant was (1.02~1.18)×10, and the removal of manganese and ammonia nitrogen followed the kinetic law of zero-order enzymatic reaction, and the oxidation kinetics constant were (0.15~0.83)×10-1 and (0.31~1.20)×10-1. The oxidation rate of iron was the fastest and was first removed. The order of oxidation and removal of manganese and ammonia nitrogen was greatly affected by substrate concentration.
|
Received: 08 April 2017
|
|
|
|
|
[1] |
危润初,肖长来,梁秀娟.吉林市城区地下水污染时空演化[J]. 中国环境科学, 2014,34(2):417-423.
|
[2] |
李冬,曹瑞华,杨航,等.生物净化低温高铁锰氨氮地下水氨氮去除机制[J]. 中国环境科学, 2017,37(7):2623-2632.
|
[3] |
Gouzinis A, Kosmidis N, Vayenas D V, et al. Removal of Mn and simultaneous removal of NH3, Fe and Mn from potable water using a trickling filter[J]. Water Research, 1998,32(8):2442-2450.
|
[4] |
蔡言安.含铁锰氨氮地下水生物净化试验研究[D]. 北京:北京工业大学, 2015.
|
[5] |
Mouchet P. From conventional to biological removal of iron and manganese in France[J]. Journal American Water Works Association, 1992,84(4):158-167.
|
[6] |
刘建广,张晓健,王占生.温度对生物炭滤池处理高氨氮原水硝化的影响[J]. 中国环境科学, 2004,24(2):233-236.
|
[7] |
Andersson A, Laurent P, Kihn A, et al. Impact of temperature on nitrification in biological activated carbon (BAC) filters used for drinking water treatment[J]. Water Research, 2001,35(12):2923-2934.
|
[8] |
李冬.生物除铁除锰理论与工程应用技术研究[D]. 北京:北京工业大学, 2004.
|
[9] |
曾辉平.含高浓度铁锰及氨氮的地下水生物净化效能与工程应用研究[D]. 哈尔滨:哈尔滨工业大学, 2010.
|
[10] |
曾辉平,李冬,高源涛,等.高铁高锰高氨氮地下水的两级净化研究[J]. 中国给水排水, 2010,26(11):142-144.
|
[11] |
GB/T5750-2006生活饮用水标准检验方法[S].
|
[12] |
GB5749-2006生活饮用水卫生标准[S].
|
[13] |
张杰,李冬,杨宏,等.生物固锰除锰机理与工程技术[M]. 北京:中国建筑工业出版社, 2004.
|
[14] |
Pacini V A, María I A, Sanguinetti G. Removal of iron and manganese using biological roughing up flow filtration technology[J]. Water Research, 2005,39(18):4463-4475.
|
[15] |
蔡言安,李冬,曾辉平,等.生物滤池净化含铁锰高氨氮地下水试验研究[J]. 中国环境科学, 2014,34(8):1993-1997.
|
[16] |
Tekerlekopoul A G, Vayenas D V. Simultaneous biological removal of ammonia, iron and manganese from potable water using a trickling filter[J]. Biochemical Engineering Journal, 2008, 39(1):215-220.
|
[17] |
蔡言安,李冬,曾辉平,等.氨氮与亚硝酸盐对含铁锰地下水生物净化影响[J]. 哈尔滨工业大学学报, 2014,46(8):96-101.
|
[18] |
尹军,刘志生.饮用水ORP的健康意义及影响因素探讨[J]. 中国给水排水, 2005,21(9):25-28.
|
[19] |
Zhang J H, Leonard W L, Yarrow M N, et al. Kinetics of Mn(Ⅱ) oxidation by Leptothrix Discophora SS1[J]. Geochimica Et Cosmochimica Acta, 2002,65(5):773-781.
|
[20] |
高洁,李碧清,杨宏,等.生物滤层中锰去除反应动力学研究[J]. 哈尔滨工业大学学报, 2005,37(10):1339-1343.
|
[21] |
Charly R C, Hoopen D G, Melee A G. Nitrification kinetics in activated sludge at various temperatures and dissolved oxygen concentrations[J]. Water Research, 1980,14(8):1387-1396.
|
[22] |
Zhu S M, Chen S L. An experimental study on nitrification biofilm performances using a series reactor system[J]. Aquacultural Engineering, 1999,20(2):245-259.
|
[23] |
李娟英,赵庆祥.氨氮生物硝化分段动力学特性研究[J]. 安全与环境学报, 2005,5(4):46-48.
|
[24] |
杨威,田家宇,李圭白.生物活性滤池饮用水除氨氮的影响因素[J]. 化工学报, 2008,59(9):2316-2320.
|
[25] |
唐玉兰,和娟娟,武卫斌,等.曝气生物滤池同步除铁锰和氨氮[J]. 化工学报, 2011,62(3):792-794.
|
[26] |
程庆锋.高铁锰氨氮地下水净化工艺优化及菌群结构研究[D]. 哈尔滨工业大学, 2014.
|
[27] |
Appelo C, Drijver B, Hekkenberg R, et al. Modeling in situ iron removal from ground water[J]. Ground Water, 1999,37(6):811-817.
|
[28] |
Cai Y A, Li D, Liang Y W, et al. Effective start-up biofiltration method for Fe, Mn and ammonia removal and bacterial community analysis[J]. Bioresource Technology, 2015,176:149-155.
|
[29] |
李冬,曾辉平.高铁锰地下水生物净化技术[M]. 北京:中国建筑工业出版社, 2014.
|
[30] |
张杰,杨宏,李冬,等.生物滤层中Fe2+的作用及对除锰的影响[J]. 中国给水排水, 2001,17(9):14-16.
|
[31] |
范懋功.氧化还原电位和地下水除铁除锰[J]. 公用科技, 1996,(2):30-32.
|
[32] |
Michalakos G D, Nieva J M, Vayenas D V, et al. Removal of iron from potable water using a trickling filter[J]. Water Research, 1997,31(5):991-996.
|
[33] |
许保玖,龙腾锐.当代给水与废水处理原理[M]. 北京:高等教育出版社, 2000:19-23.
|
[34] |
Bouwer E J, Crowe P. Biological processes in drinking water treatment[J]. Journal American Water Works Association, 1988, 80(9):82-93.
|
[35] |
杨晓峰.维系沈阳市生物除锰滤池除锰能力的实验研究[D]. 哈尔滨:哈尔滨工业大学, 2007.
|
[36] |
禹丽娥.地下水生物除铁效果及其动力学研究[J]. 供水技术, 2009,3(3):19-21.
|
[37] |
薛罡,赵洪宾.地下水中生物除锰的最佳运行条件及动力学[J]. 中国给水排水, 2003,19(Z1):85-87.
|
[38] |
周鑫辉.饮用水生物氧化除锰特性、机理与动力学研究[D]. 长沙:湖南大学, 2006.
|
[39] |
周鑫辉,邵骁,王慧敏.生物氧化除锰动力学模型研究[J]. 湿法冶金, 2007,26(1):25-29.
|
[40] |
曾辉平,李冬,李相昆,等.高铁高锰高氨氮地下水的生物同层净化研究[J]. 中国给水排水, 2009,25(17):78-84.
|
|
|
|