|
|
Influences of sediment characteristics and overlying water quality on sediment bacterial communities in a seasonal sandy river |
LIU Rui, ZHOU Xiao-de |
State Key Laboratory of Ecological Water Conservancy in the Northwest Arid Area, Xi'an University of Technology, Xi'an 710048, China |
|
|
Abstract The seasonal change of the diversity and structure of sediment bacterial communities in sandy Weihe River and the influences of sediment particle characteristic, sediment nutrient content and the quality of overlaying water were investigated using terminal-restriction fragment length polymorphism (T-RFLP) analysis. The results of redundancy analysis (RDA) revealed significant seasonal variations of sediment characteristics and water quality. Total nitrogen content in sediment increased one order of magnitude with a decrease of spatial heterogeneity (RSD=17%) in wet season, while N:P in sediment was moderately correlated with N:P in overlying water. Based on T-RFLP, the Shannon index of sediment bacterial communities in mainstream ranged between 2.02 and 3.18. Spatial change pattern of bacterial diversity was also considerably different between hydrological seasons. Sediment bacterial communities in wet season had the strongest heterogeneity (RSD=37.4%) and the lowest Bray-Curtis similarity (17.4%). Most of the dominant fragments belong to species within the phyla of Proteobacteria and Bacteroidetes. Properties of sediment strongly influenced bacterial communities in normal and dry season, while the quality of overlying water had a close relationship with sediment bacteria community in wet season. All these results indicated the complexity of sediment bacterial community variation in seasonally sandy river, and significant impacts of sediment characteristics and overlying water quality.
|
Received: 16 April 2017
|
|
|
|
|
[1] |
Brune A, Frenzel P, Cypionka H. Life at the oxic-anoxic interface:microbial activities and adaptations[J]. Fems Microbiology Reviews, 2000,24:691-700.
|
[2] |
Droppo I G, Krishnappan B G, Lawrence J R. Microbial interactions with naturally occurring hydrophobic sediments:Influence on sediment and associated contaminant mobility[J]. Water Research, 2016,(92):121-130.
|
[3] |
鲍林林,王晓燕,陈永娟,等.北运河沉积物中主要脱氮功能微生物的群落特征[J]. 中国环境科学, 2016,36(5):1520-1529.
|
[4] |
Liu T Z, Wang H, Zhang Z, et al. Application of synthetic iron-oxide coated zeolite for the pollution control of river sediments[J]. Chemosphere, 2017,180:160-168.
|
[5] |
汪淼,王圣瑞,焦立新,等.滇池沉积物内源氮释放风险及控制分区[J]. 中国环境科学, 2016,36(3):798-807.
|
[6] |
Russo S A, Hunn J, Characklis GW. Considering Bacteria-Sediment Associations in Microbial Fate and Transport Modeling[J]. Journal of Environmental Engineering, 2011,137(8):697-706.
|
[7] |
Xu P, Laura G. Leff. Longitudinal changes in the benthic bacterial community of the Mahoning River (Ohio, U.S.A.)[J]. Hydrobiologia, 2004,522:329-335.
|
[8] |
Shao K Q, Gao G, Wang Y P, et al. Vertical diversity of sediment bacterial communities in two different trophic states of the eutrophic Lake Taihu, China[J]. Journal of Environmental Sciences, 2013,25(6):1186-1194.
|
[9] |
郑艳玲,侯立军,陆敏,等.崇明东滩夏冬季表层沉积物细菌多样性研究[J]. 中国环境科学, 2012,32(2):300-310.
|
[10] |
王凯,邹立,高冬梅,等.黄河口潮滩春季细菌群落的分布特征及其影响因素研究[J]. 中国海洋大学学报, 2016,46(1):108-115.
|
[11] |
王永霞.云南高原程海湖沉积物中的细菌多样性研究[D]. 昆明:云南大学, 2014.
|
[12] |
宋洪宁.东平湖沉积物细菌多样性分析[D]. 泰安:山东农业大学, 2010.
|
[13] |
鲁克帅.南四湖沉积物细菌多样性研究[D]. 曲阜:曲阜师范大学, 2013.
|
[14] |
Wang L P, Liu L S, Zheng B H, et al. Analysis of the bacterial community in the two typical intertidal sediments of Bohai Bay, China by pyrosequencing[J]. Marine Pollution Bulletin, 2013,72:181-187.
|
[15] |
刘爱菊,王洪海,潘嘉芬,等.孝妇河表层沉积物中重金属赋存形态与微生物群落组成[J]. 中国环境科学, 2010,30(8):1103-1109.
|
[16] |
Verma P, Raghavan R V, Jeon C O, et al. Complex bacterial communities in the deep-sea sediments of the Bay of Bengal and volcanic Barren Island in the Andaman Sea[J]. Marine Genomics, 2017,31:33-41.
|
[17] |
孙悦,李栋梁,朱拥军.渭河径流变化及其对气候变化与人类活动的响应研究进展[J]. 干旱气象, 2013,31(2):396-405.
|
[18] |
查小春,延军平.全球变化下秦岭南北河流径流泥沙比较分析[J]. 地理科学, 2002,22(4):403-407.
|
[19] |
刘晓琼,刘彦随,李同昇.基于小波多尺度变换的渭河水沙演变规律研究[J]. 地理科学, 2015,35(2):211-217.
|
[20] |
刘睿,吴巍,周孝德,等.渭河浮游细菌群落结构特征及其关键驱动因子[J]. 环境科学学报, 2017,37(3):934-944.
|
[21] |
Huang Y, Zou L, Zhang S Y, et al. Comparison of bacterioplankton communities in threeheavily polluted streams in China[J]. Biomedical and Environmental Sciences, 2011,24(2):140-145.
|
[22] |
Xie S G, Sun W M, Luo C L, et al. Stable Isotope Probing Identifies Novel m-Xylene Degraders in Soil Microcosms from Contaminated and Uncontaminated Sites[J]. Water Air and Soil Pollution, 2010,212(1-4):113-122.
|
[23] |
Kent A D, Smith D J, Benson B J, et al. Web-Based Phylogenetic Assignment Tool for Analysis of Terminal Restriction Fragment Length Polymorphism Profiles of Microbial Communities[J]. Applied and Environmental Microbiology, 2003,69(11):6768-6776.
|
[24] |
王萃,鲍林林,王晓燕.密云水库底泥和库滨区土壤中氨氧化细菌的多样性和丰度[J]. 环境科学学报, 2013,33(12):3334-3340.
|
[25] |
O'Brien R M..Caution regarding rules of thumb for variance inflation factors[J]. Quality & Quantity, 2007,41(5):673-690.
|
[26] |
Leduc D, Rowden A A, Probert P K, et al. Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2012,63:164-169.
|
[27] |
宋进喜,于芳,王珍.渭河陕西段河床沉积物的粒度参数分析[J]. 南水北调与水利科技, 2013,11(4):75-78.
|
[28] |
李勇,李海燕,赵应权.沉积物粒度特征及其对环境的指示意义——以濠河为例[J]. 吉林大学学报(地球科学版), 2015, 45(3):918-925.
|
[29] |
杨小刚,宋进喜,陈佳,等.渭河陕西段潜流带沉积物重金属变化初步分析[J]. 环境科学学报, 2014,34(8):2051-2061.
|
[30] |
张台凡,宋进喜,杨小刚,等.渭河陕西段沉积物中总磷、总氮时空分布特征及其影响因素研究[J]. 环境科学学报, 2015,35(5):1393-1399.
|
[31] |
宋洪宁,杜秉海,张明岩,等.环境因素对东平湖沉积物细菌群落结构的影响[J]. 微生物学报, 2010,50(8):1065-1071.
|
[32] |
刘铁龙.陕西省渭河主要支流水量与调控能力状况分析[J]. 陕西水利, 2015,(4):15-19.
|
[33] |
牛珊珊.2005-2010年渭河主要支流水质变化趋势[J]. 人民黄河, 2014,36(10):89-91.
|
[34] |
李家科,李怀恩,董雯,等.渭河关中段典型支流非点源污染监测与负荷估算[J]. 环境科学学报, 2011,31(7):1470-1478.
|
[35] |
于芳,宋进喜,殷旭旺,等.泾河陕西段水体污染特征分析[J]. 北京师范大学学报(自然科学版), 2013,49(4):421-424.
|
[36] |
隋立新.不同温度下微生物群落结构与厌氧膜生物反应器膜污染之间关系的研究[D]. 哈尔滨:哈尔滨工业大学, 2014.
|
[37] |
赵霏.再生水湿地香蒲根际细菌多样性研究-以北京市永定河城市景观补水段为例[D]. 北京:首都师范大学, 2014.
|
[38] |
Koski-Vahala J, Hartikainen H, Tallberg P. Phosphorus mobilization from various sediment pools in response to increased pH and silicate concentration[J]. Journal of Environmental Quality, 2001,30(2):546-552.
|
[39] |
Yannarell A C, Triplett E W. Geographic and environmental sources of variation in lake bacterial community composition[J]. Applied and Environmental Microbiology, 2005,71(1):227-239.
|
[40] |
左新宇,梁运祥.微囊藻与硝化细菌在不同种群密度条件下的相互作用[J]. 环境科学与技术, 2013,36(12):65-70.
|
[41] |
黄睿,沈烽,罗娟,等.蓝藻水华消亡对湖泊表层沉积物中氨氧化细菌丰度和群落结构的影响[J]. 生态与农村环境学报, 2015,31(3):334-339.
|
[42] |
de Beer D, Wenzhöfer F, Ferdelman T, et al. Transport and mineralization rates in North Sea sandy intertidal sediments, Sylt-Romo Basin, Wadden Sea[J]. Limnology & Oceanography, 2005,50:113-127.
|
[43] |
王珍.渭河(陕西段)潜流带水交换对TN、TP迁移转化的影响研究[D]. 西安:西北大学, 2014.
|
|
|
|