|
|
The spatial differences analysis of ecological stoichiometric characteristics of Lake Taihu food web |
XU De-lin1, LIN Nai-feng1, ZOU Chang-xin1, WANG Yan1, WU Dan1, CAI Yin2, AN Shu-qing2 |
1. Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042, China; 2. School of Life Science, Nanjing University, Nanjing 210023, China |
|
|
Abstract Environmental samples (water and SOM) and biological samples were collected from the algae-dominated zone and macrophyte-dominated zone, respectively, in Lake Taihu. The content and ratio of TOC, TN and TP of environmental samples and biological samples of these two lake zones were analyzed to explore the spatial differences within ecological stoichiometric characteristics of Lake Taihu food web. Results show that, the elemental carbon, nitrogen and phosphorus contents of the environmental samples in the algae-dominant zone were higher than those of the macrophyte-dominated zone. Furthermore, there were significant differences within environmental TOC, TN and TP, except for the TOC and TN of SOM. The elemental content was stable for species in the higher trophic levels between these two lake zones. The C:N, C:P and N:P ratios of environmental samples in the algae-dominated zone were lower than that in the macrophyte-dominated zone; however, only the C:P and C:N of SOM in these two lake zones showed significant differences (P<0.05). In addition, groups in the lower trophic levels of the food web showed more variability of element ratios within the two lake zones. Thus, a stoichiometric imbalance exists in the food webs of both lake zones. These spatial differences may be related to different pollution inputs for these two lake zones. Furthermore, the relatively stable element content and ratio of the species at the higher trophic levels reflect the stoichiometric homeostasis within food web.
|
Received: 10 May 2017
|
|
|
|
|
[1] |
张波,吴强,金显仕.1959-2011年莱州湾渔业资源群落食物网结构的变化[J]. 中国水产科学, 2015,22(2):278-287.
|
[2] |
Banasek-Richter C, Bersier L F, Cattin M F, et al. Complexity in quantitative food webs[J]. Ecology, 2009,90(6):1470-1477.
|
[3] |
贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010,34(1):2-6.
|
[4] |
邬畏,何兴东,周启星.生态系统氮磷比化学计量特征研究进展[J]. 中国沙漠, 2010,30(2):296-302.
|
[5] |
Bradshaw C, Kautsky U, Kumblad L. Ecological stoichiometry and multi-element transfer in a coastal ecosystem[J]. Ecosystems, 2012,15(4):591-603.
|
[6] |
Sterner R W, Elser J J. Ecological Stoichiometry:the Biology of Elements from Molecules to the Biosphere[M]. Princeton, Princeton University Press, 2002:221-224.
|
[7] |
Persson J, Fink P, Goto A, et al. To be or not to be what you eat:regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J]. Oikos, 2010,119(5):741-751.
|
[8] |
程滨,赵永军,张文广,等.生态化学计量学研究进展[J]. 生态学报, 2010,30(6):1628-1637.
|
[9] |
曾冬萍,蒋利玲,曾从盛,等.生态化学计量学特征及其应用研究进展[J]. 生态学报, 2013,33(18):5484-5492.
|
[10] |
谢锦,常顺利,张毓涛,等.天山北坡植物土壤生态化学计量特征的垂直地带性[J]. 生态学报, 2016,36(14):4363-4372.
|
[11] |
邢伟,刘寒,刘贵华.生态化学计量学在水生态系统中的研究与应用[J]. 植物科学学报, 2015,33(5):608-619.
|
[12] |
Smith V H, Schindler D W. Eutrophication science:where do we go from here?[J]. Trends in Ecology & Evolution, 2009,24(4):201-207.
|
[13] |
陈蕾,李超伦.海洋浮游生物的生态化学计量学研究进展[J]. 应用生态学报, 2014,25(10):3047-3055.
|
[14] |
蔡永久,薛庆举,陆永军,等.长江中下游浅水湖泊5种常见底栖动物碳、氮、磷化学计量特征[J]. 湖泊科学, 2015,27(1):76-85.
|
[15] |
Rawcliffe R, Sayer C D, Woodward G, et al. Back to the future:using palaeolimnology to infer long-term changes in shallow lake food webs[J]. Freshwater Biology, 2010,55(3):600-613.
|
[16] |
McCann M J. Evidence of alternative states in freshwater lakes:A spatially-explicit model of submerged and floating plants[J]. Ecological Modelling, 2016,337(c):298-309.
|
[17] |
Zhao D H, Jiang H, Cai Y, et al. Artificial regulation of water level and its effect on aquatic macrophyte distribution in Taihu Lake[J]. PLoS ONE, 2012,7(9):e44836.
|
[18] |
王银平,谷孝鸿,曾庆飞,等.太湖不同生态型湖区湖鲚(Coilia ectenes taihuensis)食物组成及其季节变化[J]. 湖泊科学, 2016,28(5):1078-1085.
|
[19] |
陈立侨,刘影,杨再福,等.太湖生态系统的演变与可持续发展[J]. 华东师范大学学报(自然科学版), 2003,4:99-106.
|
[20] |
王倩,吴亚东,丁庆玲,等.西太湖入湖河流水系污染时空分异特征及解析[J]. 中国环境科学, 2017,37(7):2699-2707.
|
[21] |
章婷曦,王晓蓉,金相灿.太湖不同营养水平湖区沉积物中磷形态的分布特征[J]. 农业环境科学学报, 2007,26(4):1207-1213.
|
[22] |
赵海霞,王梅,段学军.水环境容量约束下的太湖流域产业集聚空间优化[J]. 中国环境科学, 2012,32(8):1530-1536.
|
[23] |
王佩,卢少勇,王殿武,等.太湖湖滨带底泥氮、磷、有机质分布与污染评价[J]. 中国环境科学, 2012,32(4):703-709.
|
[24] |
Liu W Z, Zhang Q F, Liu G H. Effects of Watershed Land Use and Lake Morphometry on the Trophic State of Chinese Lakes:Implications for Eutrophication Control[J]. Clean-soil, air, water, 2013,39(1):35-42.
|
[25] |
王永平,朱广伟,洪大林,等.太湖草、藻型湖区沉积物-水界面厚度及环境效应研究[J]. 中国环境科学, 2013,33(1):132-137.
|
[26] |
王秋娟,李永峰,姜霞,等.太湖北部三个湖区各形态氮的空间分布特征[J]. 中国环境科学, 2010,30(11):1537-1542.
|
[27] |
周莉,冯胜,李忠玉,等.夏季太湖浊度分布特征及其在水-沉积物界面识别中的应用[J]. 中国环境科学, 2015,35(10):3108-3116.
|
[28] |
王芳,国先涛,董双林.水域生态系统生态化学计量学研究进展[J]. 中国海洋大学学报(自然科学版), 2015,45(12):16-23.
|
[29] |
Persson J, Fink P, Goto A, et al. To be or not to be what you eat:regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J]. Oikos, 2010,119(5):741-751.
|
[30] |
于佳佳,尹洪斌,高永年,等.太湖流域沉积物营养盐和重金属污染特征研究[J]. 中国环境科学, 2017,37(6):2287-2294.
|
[31] |
王健,张靖天,昝逢宇,等.中国东部浅水湖泊沉积物总氮总磷基准阈值研究[J]. 生态环境学报, 2014,23(6):992-999.
|
[32] |
蔡龙炎,李颖,郑子航.我国湖泊系统氮磷时空变化及对富营养化影响研究[J]. 地球与环境, 2010,38(2):235-241.
|
[33] |
张明礼,杨浩,林振山,等.太湖竺山湾底泥中有害物质含量与环境污染评价[J]. 中国环境科学, 2011,31(5):852-857.
|
[34] |
王娜,徐德琳,郭璇,等.太湖沉积物微生物生物量及其与碳、氮、磷的相关性[J]. 应用生态学报, 2012,23(7):1921-1926.
|
[35] |
周笑白,张宁红,张咏,等.太湖蓝藻的时空变化规律及治理方法[J]. 生态环境学报, 2013,22(12):1930-1935.
|
[36] |
Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003,6(10):936-943.
|
[37] |
Liu E, Shen J, Yuan H, et al. The spatio-temporal variations of sedimentary phosphorus in Taihu Lake and the implications for internal loading change and recent eutrophication[J]. Hydrobiologia, 2013,711(1):87-98.
|
[38] |
Glibert P M. Ecological stoichiometry and its implications for aquatic ecosystem sustainability[J]. Current Opinion in Environmental Sustainability, 2012,4(3):272-277.
|
|
|
|