|
|
The impact of meteorological comfort conditions on respiratory disease |
MA Pan1,2, WANG Shi-gong1,2, SHANG Ke-zheng2, LI Tan-shi3, YIN Ling3 |
1. College of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China; 2. College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China; 3. Chinese PLA General Hospital, Beijing 100853, China |
|
|
Abstract The distributed lag nonlinear model and generalized additive model were applied to study the exposureresponse relationship between meteorological conditions and the number of emergency room (ER) visits for respiratory diseases, from 2009 to 2012 in Beijing, China. The Universal Thermal Climate Index (UTCI) was used as an indicator of climate thermal condition. Immediate influence of high temperatures and lag effect of low temperatures on the incidence were revealed. Relative humidity (RH) <30% significantly increased the risk of onset, and its lag effect reached more than 10days. The RR of wind speed 3m/s was the smallest. When considering the comprehensive effect of multiple factors, children (≤ 14years) were more sensitive to heat stress than cold stress, especially the ‘hot and humidity’ circumstance. While for adults (15~59years), the impact of cold stress was particularly significant, which lagged for 1~2days and lasted a long time. The elders (>60years) were more vulnerable to cold stress than heat stress, the condition that low temperatures and low humidity occur simultaneously should be paid particular attention. Employing UTCI as a characterization of the comprehensive thermal state of the environment is a feasible way to investigate the effects of environmental conditions on the incidence of respiratory diseases, which may enhance related theoretical basis and provide new ideas for disease forecasting and early warning.
|
Received: 12 June 2017
|
|
|
|
|
[1] |
Havenith G, Fiala D, B?azejczyk K, et al. The UTCI-clothing model[J]. International Journal of Biometeorology, 2012,56(3):461-470.
|
[2] |
张志薇,孙宏,蒋薇,等.南京地区人体舒适度及其与居民循环系统疾病死亡关系的研究[J]. 气候变化研究进展, 2014, 10(1):67-73.
|
[3] |
张莹,王式功,贾旭伟,等.气温与PM2.5协同作用对疾病急诊就诊人数的影响[J]. 中国环境科学, 2017,37(8):3175-3182.
|
[4] |
Field C B, Barros V, Dokken D J, et al. Climate Change 2014:Impacts, Adaptation, and Vulnerability. Part A:Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge and New York:Cambridge University Press, 2014.
|
[5] |
马盼,李若麟,乐满,等.气象环境要素对北京市消化系统疾病的影响[J]. 中国环境科学, 2016,36(5):1589-1600.
|
[6] |
Thom E C. The discomfort index[J]. Weatherwise, 1959,12(2):57-61.
|
[7] |
Siple P A, Passel C F. Measurements of dry atmospheric cooling in subfreezing temperatures[J]. Proceedings of the American Philosophical Society, 1945,1:177-199.
|
[8] |
Steadman R G. Indices of wind chill of clothed persons[J]. Journal of Applied Meteorology, 1971,10:674-683.
|
[9] |
Steadman R G. The assessment of sultriness. Part I:A temperature-humidity index based on human physiology and clothing science[J]. Journal of Applied Meteorology, 1979,18:861-873.
|
[10] |
Fanger P O, Toftum J. Extension of the PMV model to non-airconditioned buildings in warm climates[J]. Energy & Buildings, 2002,34(6):533-536.
|
[11] |
Jendritzky G, Dear R D, Havenith G. Utci——why another thermal index[J]. International Journal of Biometeorology, 2011,56(3):421-428.
|
[12] |
Blazejczyk K, Epstein Y, Jendritzky G, et al. Comparison of UTCI to selected thermal indices[J]. International Journal of Biometeorology, 2012,56(3):515-35.
|
[13] |
de Freitas C R, Grigorieva E A. A comparison and appraisal of a comprehensive range of human thermal climate indices[J]. International Journal of Biometeorology, 2016,61(3):487-512.
|
[14] |
唐锐先,王秀洁.急诊疾病谱规律研究与分析(附30144病例分析)[J]. 中国急救医学, 2007,27(10):901-904.
|
[15] |
王晓节,周敏茹.青海省2006年居民疾病调查分析[J]. 中华流行病学杂志, 2008,29(6):586-589.
|
[16] |
李雪源,景元书,吴凡,等.南京市呼吸系统疾病死亡率与气象要素的关系及预测[J]. 气象与环境学报, 2012,28(5):46-48.
|
[17] |
马盼,黎檀实,宁贵财,等.北京市上呼吸道感染与气象环境关系及其冬季天气分型初探[J]. 兰州大学学报:自然科学版, 2014,(1):79-86.
|
[18] |
陶辉,童建勇,沈艳辉,等.北京市H区日平均气温与呼吸系统疾病死亡的病例交叉研究[J]. 环境与健康杂志, 2011,28(7):569-572.
|
[19] |
闫业超,岳书平,刘学华,等.国内外气候舒适度评价研究进展[J]. 地球科学进展, 2013,28(10):1119-1125.
|
[20] |
Fanger P O. Thermal comfort. Analysis and applications in environmental engineering[J]. Thermal Comfort Analysis & Applications in Environmental Engineering, 1970.
|
[21] |
Matzarakis A, Rutz F, Mayer H. Modelling radiation fluxes in simple and complex environments:basics of the RayMan model[J]. International Journal of Biometeorology, 2009,54(2):131-9.
|
[22] |
陈林利,汤军克,董英,等.广义相加模型在环境因素健康效应分析中的应用[J]. 数理医药学杂志, 2006,19(6):569-570.
|
[23] |
Gasparrini A. Distributed lag linear and non-linear models in R:The package dlnm[J]. Journal of Statistical Software, 2011, 43(8):1-20.
|
[24] |
朱学玲,任健.人体舒适度的分析与预报[J]. 气象与环境科学, 2011,34(B09):131-134.
|
[25] |
Lodhi I J, Semenkovich C F. Why we should put clothes on mice[J]. Cell Metabolism, 2009,9(2):111-2.
|
[26] |
Huang C R, Barnett A G, Wang X M, et al. The impact of temperature on years of life lost in Brisbane, Australia[J]. Nature Climate Change, 2012,2:265-270.
|
[27] |
Yu W, Guo Y, Ye X, et al. The effect of various temperature indicators on different mortality categories in a subtropical city of Brisbane, Australia[J]. Science of the Total Environment, 2011, 409(18):3431-3437.
|
[28] |
Gómez-Acebo I, Dierssen-Sotos T, Llorca J. Effect of cold temperatures on mortality in Cantabria (Northern Spain):a case-crossover study[J]. Public Health, 2010,124(7):398-403.
|
[29] |
王敏珍,郑山,王式功,等.气温与湿度的交互作用对呼吸系统疾病的影响[J]. 中国环境科学, 2016,36(2):581-588.
|
[30] |
李双双,杨赛霓,刘宪锋,等.1960~2014年北京户外感知温度变化特征及其敏感性分析[J]. 资源科学, 2016,38(1):175-184.
|
|
|
|