|
|
Spatial heterogeneity analysis of PM2.5 concentrations in intra-urban microenvironments |
HU Chen-xia1, ZOU Bin1, LI Shen-xin1, DUAN Xiao-li2, ZHOU Xiang3 |
1. School of Geosciences and Info-physics, Central South University, Changsha 410083, China; 2. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; 3. Hunan Land Resources Information Center, Changsha 410004, China |
|
|
Abstract Combing the observed hourly PM2.5 concentrations from 10 regular sites of national air quality monitoring network (sparse observation mode) and 203 ground portable air quality monitors (dense observation mode),we analyzed the micro-environmental distribution characteristic of PM2.5 concentrations from point and area perspectives in the downtown area of Changsha city.Results showed that,under dense observation mode,relatively high PM2.5 concentrations appeared in areas with intensive human and vehicles activities,such as road intersections,construction sites,residential districts,hospitals and industrial zones,while relatively low concentrations mainly happened in scenic regions with large vegetation coverage.More rarely differences of PM2.5 concentrations at same location did exist under dense and sparse observation modes.Meanwhile,inverse distance weighting based spatial interpolated map of PM2.5 concentrations from dense observation mode revealed that obviously heterogeneous characteristics of PM2.5 variations were marked with the highest values (>75μg/m3) in northwest part,moderate values (65~75μg/m3) in the central south part,and the lowest ones (<55μg/m3) in the east part of the study area.These characteristics were furtherly demonstrated by the significant spatial anisotropy from directional profile analysis.Inversely,the interpolated PM2.5 distribution map under sparse observation mode cannot reflect this inherent heterogeneity,with overall PM2.5 concentration lower than 55μg/m3.The PM2.5 concentrations at dense observation sites extracted from the sparsely interpolated distribution map were clearly lower than the real values,while the higher PM2.5 concentrations only appeared in the road intersections,construction sites and bus stations.Results suggest that the PM2.5 concentrations from the nationally regular sites established for protecting environmental was difficult to reflect the ground real PM2.5 values at the same locations.The microenvironments in intra-urban area with higher PM2.5 concentrations identified under sparse and dense observation modes are different.The greater concentration deviations of these microenvironments generally occurred with relatively good air quality.
|
Received: 22 August 2017
|
|
|
|
|
[1] |
Kan H, Chen R, Tong S. Ambient air pollution, climate change, and population health in China.[J]. Environment International, 2012,42(1):10-19.
|
[2] |
孙兆彬,陶燕,崔甍甍,等.北京地区奥运会期间PM2.5对心脑血管疾病的影响[J]. 中国环境科学, 2015,35(11):3481-3488.
|
[3] |
张莹,王式功,贾旭伟,等.气温与PM2.5协同作用对疾病急诊就诊人数的影响[J]. 中国环境科学, 2017,37(8):3175-3182.
|
[4] |
邹滨,许珊,张静.土地利用视角空气污染空间分异的地理分析[J]. 武汉大学学报×信息科学版, 2017,42(2):216-222.
|
[5] |
焦利民,许刚,赵素丽,等.基于LUR的武汉市PM2.5浓度空间分布模拟[J]. 武汉大学学报信息科学版, 2015,40(8):1088-1094.
|
[6] |
Hoek G, Beelen R, De Hoogh K, et al. A review of land~use regression models to assess spatial variation of outdoor air pollution[J]. Atmospheric environment, 2008,42(33):7561-7578.
|
[7] |
Johnson M, Isakov V, Touma J S, et al. Evaluation of land-use regression models used to predict air quality concentrations in an urban area[J]. Atmospheric Environment, 2010,44(30):3660-3668.
|
[8] |
Lee J H, Wu C F, Hoek G, et al. LUR models for particulate matters in the Taipei metropolis with high densities of roads and strong activities of industry, commerce and construction[J]. Science of the Total Environment, 2015,514:178-184.
|
[9] |
江曲图,何俊昱,王占山,等.基于LUR/BME的海岸带地区PM2.5时空特性研究[J]. 中国环境科学, 2017,37(2):424-431.
|
[10] |
于文金,于步云,谢涛,等.基于MODIS气溶胶光学厚度与气象要素的苏锡常地区PM2.5地面浓度分布研究[J]. 环境科学学报, 2016,36(10):3535-3542.
|
[11] |
Fang X, Zou B, Liu X, et al. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling[J]. Remote Sensing of Environment, 2016,186:152-163.
|
[12] |
Zou B, Pu Q, Bilal M, et al. High-resolution satellite mapping of fine particulates based on geographically weighted regression[J]. IEEE Geoscience and Remote Sensing Letters, 2016,13(4):495-499.
|
[13] |
薛文博,武卫玲,许艳玲,等.基于WRF模型与气溶胶光学厚度的PM2.5近地面浓度卫星反演[J]. 环境科学研究, 2016,29(12):1751-1758.
|
[14] |
Ma Z, Hu X, Huang L, et al. Estimating ground-level PM2.5 in China using satellite remote sensing[J]. Environmental Science & Technology, 2014,48(13):7436-7444.
|
[15] |
Gulliver J, de Hoogh K, Fecht D, et al. Comparative assessment of GIS~based methods and metrics for estimating long~term exposures to air pollution[J]. Atmospheric Environment, 2011, 45(39):7072-7080.
|
[16] |
王振波,方创琳,许光,等.2014年中国城市PM2.5浓度的时空变化规律[J]. 地理学报, 2015,70(11):1720-1734.
|
[17] |
赵晨曦,王云琦,王玉杰,等.北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系[J]. 环境科学, 2014,35(2):418-427.
|
[18] |
李名升,任晓霞,于洋,等.中国大陆城市PM2.5污染时空分布规律[J]. 中国环境科学, 2016,36(3):641-650.
|
[19] |
HJ664-2013环境空气质量监测点位布设技术规范(试行)[S].
|
[20] |
Wallace J, Corr D, Deluca P, et al. Mobile monitoring of air pollution in cities:the case of Hamilton, Ontario, Canada[J]. Journal of Environmental Monitoring, 2009,11(5):998-1003.
|
[21] |
Van den Bossche J, Peters J, Verwaeren J, et al. Mobile monitoring for mapping spatial variation in urban air quality:development and validation of a methodology based on an extensive dataset[J]. Atmospheric Environment, 2015,105:148-161.
|
[22] |
张云伟,王晴茹,陈嘉,等.城市街谷内PM2.5浓度时空变化及影响因素分析[J]. 中国环境科学, 2016,36(10):2944-2949.
|
[23] |
王占永,蔡铭,彭仲仁,等.基于移动观测的路边PM2.5和CO浓度的时空分布[J]. 中国环境科学, 2017,37(12):4428-4434.
|
[24] |
王琴,张大伟,刘保献,等.基于PMF模型的北京市PM2.5来源的时空分布特征[J]. 中国环境科学, 2015,35(10):2917-2924.
|
[25] |
王嫣然,张学霞,赵静瑶,姜群鸥.2013~2014年北京地区PM2.5时空分布规律及其与植被覆盖度关系的研究[J]. 生态环境学报, 2016,25(1):103-111.
|
[26] |
Wang Y, Zhuang G, Tang A, et al. The ion chemistry and the source of PM2.5 aerosol in Beijing[J]. Atmospheric Environment, 2005,39(21):3771-3784.
|
|
|
|