|
|
Effect of iron oxide and propionic acid on anaerobic degradation of hexachlorobenzene in soil |
LIU Cui-ying1,2, WANG Yu3, MA Yu-chun3 |
1. Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters/Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2. Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; 3. College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China |
|
|
Abstract To investigate the effects of iron oxide,propionic acid and their interaction on the reductive dechlorination of hexachlorobenzene (HCB) in soils and their reaction mechanisms,an anaerobic incubation experiment was conducted in Hydragric Acrisols with five treatments:sterile control,control,propionic acid,goethite,and propionic acid + goethite.Results showed that HCB residues for these five treatments decreased by 26.9%,48.5%,63.4%,56.9%,and 72.9% compared to the initial quantities,respectively,after 40d of incubation,and pentachlorobenzene (PeCB) was the dominant product of HCB dechlorination.The addition of propionic acid significantly accelerated the reductive dechlorination degradation of HCB throughout the incubation.The application of goethite obviously promoted HCB dechlorination in the early incubation period.The application of propionic acid and goethite resulted in a synergistic effect on accelerating the dechlorination of HCB.
|
Received: 26 July 2017
|
|
|
|
|
[1] |
UNEP. Stockholm Convention on Persistent Organic Pollutants[EB/OL]. (2001-05-22)[2016-05-23]. http://www.pops.int/documents/signature/signstatus.htm.
|
[2] |
Bailey R E. Global hexachlorobenzene emissions[J]. Chemosphere, 2001,43(2):167-182.
|
[3] |
刘翠英,王艳玲,蒋新.六氯苯在土壤中的主要迁移转化过程[J]. 土壤, 2014,46(1):29-34.
|
[4] |
Brahushi F, Dörfler U, Schroll R, et al. Stimulation of reductive dechlorination of hexachlorobenzene in soil by inducing the native microbial activity[J]. Chemosphere, 2004,55(11):1477-84.
|
[5] |
胡海珠,毛晓敏.地下水高浓度三氯乙烯厌氧生物降解的进展[J]. 科技导报, 2010,28(21):112-117.
|
[6] |
Aulenta F, Pera A, Rossetti S, et al. Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors[J]. Water Research, 2007,41:27-38.
|
[7] |
Yu S, Semprini L. Enhanced reductive dechlorination of PCE DNAPL with TBOS as a slow-release electron donor[J]. Journal of Hazard Materials, 2009,167:97-104.
|
[8] |
Smatlak C R, Gossett J M. Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture[J]. Environmental Science and Technology, 1996,30:2850-2858.
|
[9] |
单玉华,蔡祖聪,韩勇,等.淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系[J]. 土壤学报, 2006,43(6):941-947.
|
[10] |
Fennell D E, Gossett J M. Comparison of butyric acid, ethanol, lactic acid, and propionic acid as hydrogen donors for the reductive dechlorination of tetrachloroethene[J]. Environmental Science and Technology, 1997,31:918-926.
|
[11] |
Fredrickson J K, Zachara J M, Kennedy D W, et al. Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a ground water bacterium[J]. Geochemicaet Cosmochemica Acta, 1998,62(19):3239-3257.
|
[12] |
Wei N, Finneran K T. Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene:Fe(Ⅲ) reduction does not always inhibit complete dechlorination[J]. Environmental Science and Technology, 2011,45:7422-7430.
|
[13] |
Li X M, Zhou S G, Li F B, et al. Fe(Ⅲ) oxide reduction and carbon tetrachloride dechlorination by a newly isolated Klebsiella pneumoniae strain L17[J]. Journal of Applied Microbiology, 2009,106:130-139.
|
[14] |
Li F B, Li X M, Zhou S G, et al. Reductive dechlorination of DDT in dissimilatory iron-reducing system of Shewanella decolorationis S12and α-FeOOH[J]. Environmental Pollution, 2010,158:1733-1740.
|
[15] |
Wu C Y, Zhuang L, Zhou S G, et al. Fe(Ⅲ)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01[J]. FEMS Microbiology Ecology, 2010,71:106-113.
|
[16] |
Li F B, Wang X, Li Y, et al. Enhancement of the reductive transformation of pentachlorophenol by polycarboxylic acids at the iron oxide-water interface[J]. Journal of Colloid and Interface Science, 2008,321:332-341.
|
[17] |
陶亮,周顺桂,李芳柏.土壤有机氯脱氯转化的界面交互反应[J]. 化学进展, 2009,21(4):791-800.
|
[18] |
李芳柏,王旭刚,周顺桂,等.红壤胶体铁氧化物界面有机氯的非生物转化研究进展[J]. 生态环境, 2006,15(5):1343-1351.
|
[19] |
鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000.
|
[20] |
Yao F X, Yu G F, Bian Y R, et al. Bioavailability to grains of rice of aged and fresh DDD and DDE in soils[J]. Chemosphere, 2007,68:78-84.
|
[21] |
Chen M J, Cao F, Li F B, et al. Anaerobic Transformation of DDT related to iron (Ⅲ) reduction and microbial community structure in paddy soils[J]. Journal of Agricultural and Food Chemistry, 2013,61:2224-2233.
|
[22] |
刘翠英,余贵芬,蒋新,等.小分子有机碳对土壤中六氯苯厌氧降解及挥发的影响[J]. 环境科学, 2008,29(5):1418-1424.
|
[23] |
樊耀亭,李晨林,侯红卫,等.天然厌氧微生物氢发酵生产生物氢气的研究[J]. 中国环境科学, 2002,22(4):370-374.
|
[24] |
Liu C Y, Jiang X, Wang F, et al. Hexachlorobenzene dechlorination as affected by nitrogen application in acidic paddy soil[J]. Journal of Hazardous Materials, 2010,179(1-3):709-714.
|
[25] |
Liu C Y, Cade-Menun B J, Xu X H, et al. Electron donor substances and iron oxides stimulate anaerobic dechlorination of DDT in a slurry system with Hydragric Acrisols[J]. Journal of Environmental Quality, 2016,45:331-340.
|
[26] |
刘翠英,王壮,徐向华,等.AQDS加速红壤性水稻土中DDT厌氧脱氯效应研究[J]. 土壤学报, 2016,53(2):151-161.
|
[27] |
李建政,王卫娜,马超,等.丁酸甲烷发酵优势菌群的选育及其丁酸降解特性[J]. 科技导报, 2008,26(11):49-52.
|
[28] |
唐子阳,汤佳,庄莉,等.土壤铁氧化物对有机质产甲烷过程的影响及其机制[J]. 生态学杂志, 2016,35(6):1653-1660.
|
[29] |
贾青竹,王昶,李桂菊,等.HCB与γ-HCH在辽河沉积物中的缺氧降解动力学[J]. 中国环境科学, 2005,25(增刊):52-55.
|
[30] |
Dankwardt A, Hock B. Immunolocalization of non-extractable (bound) residues of pesticides and industrial contaminants in plants and soil[J]. Chemosphere, 2001,45(4/5):523-533.
|
[31] |
刘翠英,樊建凌,蒋新.电子供体对土壤中多氯代有机化合物厌氧脱氯作用研究进展[J]. 土壤通报, 2014,45(4):1020-1024.
|
|
|
|