|
|
The strengthening effect of a static magnetic field on biotrickling filter-Study on trichloroethylene removal and bacterial community |
QUAN Yue1,2, WU Hao2, YIN Zhen-hao3, GUO Chun-yu2, YIN Cheng-ri2,3 |
1. Department of Environmental Science, Agricultural College, Yanbian University, Yanji 133002, China; 2. Department of Chemistry, College of Science, Yanbian University, Yanji 133002, China; 3. Analytical and Testing Center, Yanbian University, Yanji 133002, China |
|
|
Abstract A laboratory-scale biotrickling filter combined with a magnetic field (MF-BTF) and a single BTF (S-BTF) packed with laver rocks were set up to treat trichloroethylene (TCE) gas through inoculation of activated sludge.The influences of different MF intensities were investigated and high-throughput sequencing was studied to bacteria community and functions.The results showed that in aerobic conditions,with 0.20g/L of phenol,53.6 to 337.1mg/m3 of TCE,and empty bed residence times (EBRT) of 202.5s,the performances followed the order MF-BTF (60.0mT) > MF-BTF (30.0mT) > S-BTF (0.0mT) > MF-BTF (130.0mT),and the removal efficiencies (REs) and maximum elimination capacities (ECs) corresponded to:92.2%~45.5%,2656.8mg/(m3×h);89.8%~37.2%,2169.1mg/(m3×h);89.8%~29.8%,1967.7mg/(m3×h);76.0%~20.8%,1697.1mg/(m3×h),respectively.High-throughput sequencing indicated that the bacterial diversity was lower,whereas the relative abundances of predominant bacteria:Proteobacteria,Gammaproteobacteria,Acinetobacter were higher in MF-BTF (60.0mT:73.3%,36.8%,34.7%) than that in S-BTF (0mT:69.6%,18.2%,10.9%).Results confirmed that a proper MF could improve TCE removal performance in BTF.
|
Received: 22 August 2017
|
|
|
|
|
[1] |
郑江玲,朱润晔,於建明,等.生物滴滤塔同步降解多组分挥发性有机物的实验研究[J]. 中国环境科学, 2012,32(11):1971-1978.
|
[2] |
Barbusinski K, Kalemba K, Kasperczyk D, et al. Biological methods for odor treatment-a review[J]. Journal of Cleaner Production, 2017,152:223-241.
|
[3] |
刘秀红,周瑶,孟雪征,等.气水比对曝气生物滤池N2O产生的影响[J]. 北京工业大学学报, 2016,42(5):795-800.
|
[4] |
Hu J, Zhang L L, Chen J M, et al. Performance and microbial analysis of a biotrickling filter inoculated by a specific bacteria consortium for removal of a simulated mixture of pharmaceutical volatile organic compounds[J]. Chemical Engineering Journal, 2016,304:757-765.
|
[5] |
Kumari B, Singh S N, Singh D P. Characterization of two biosurfactant producing strains in crude oil degradation[J]. Process Biochemistry, 2012,47(12):2463-2471.
|
[6] |
Cheng Y, He H J, Yang C P, et al. Effects of anionic surfactant on n-hexane removal in biofilters[J]. Chemosphere, 2016,150:248-253.
|
[7] |
Tu Y H, Yang C P, Cheng Y, et al. Effect of saponins on n-hexane removal in biotrickling filters[J]. Bioresource Technology, 2015,175:231-238.
|
[8] |
Kim J Q, Terkonda P K, Lee S D. Gaseous CAH removal by biofiltration in presence and absence of a nonionic surfactant[J]. Bioprocess Engineering, 1998,19(4):253-259.
|
[9] |
Cheng Y, He H, Yang C, et al. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds[J]. Biotechnology Advances, 2016,34(6):1091-1102.
|
[10] |
杨凯雄,李琳,刘俊新.挥发性有机污染物及恶臭生物处理技术综述[J]. 环境工程, 2016,34(3):107-111.
|
[11] |
Zhu R, Christian K, Cheng Z, et al. Styrene removal in a biotrickling filter and a combined UV-biotrickling filter:Steady-and transient-state performance and microbial analysis[J]. Chemical Engineering Journal, 2015,275:168-178.
|
[12] |
Shayegan Z, Lee C S, Haghighat F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase-A review[J]. Chemical Engineering Journal, 2018,334:2408-2439.
|
[13] |
Huang H, Huang H, Zhan Y, et al. Efficient degradation of gaseous benzene by VUV photolysis combined with ozone-assisted catalytic oxidation:Performance and mechanism[J]. Applied Catalysis B Environmental, 2016,186:62-68.
|
[14] |
Gunschera J, Markewitz D, Bansen B, et al. Portable photocatalytic air cleaners:efficiencies and by-product generation[J]. Environmental Science and Pollution Research, 2015,23(8):7482-7493.
|
[15] |
He Z G, Li J, Chen J Y, et al. Treatment of organic waste gas in a paint plant by combined technique of biotrickling filtration with photocatalytic oxidation[J]. Chemical Engineering Journal, 2012, 200-202(34):645-653.
|
[16] |
曹贝,李锦祥,关小红.弱磁场强化零价铁对水中铬(Ⅵ)去除效能[J]. 化工学报, 2017,68(8):3282-3290.
|
[17] |
郭宝东. Ag/TiO2光催化剂在磁场中降解有机染料的研究[J]. 环境保护与循环经济, 2016,36(9):43-45
|
[18] |
?ebkowska M, Naro?niak-Rutkowska A, Pajor E. Effect of a static magnetic field of 7mT on formaldehyde biodegradation in industrial wastewater from urea-formaldehyde resin production by activated sludge[J]. Bioresource Technology, 2013,132(2):78-83.
|
[19] |
K?iklavová L, Truhlá? M, Škodová P, et al. Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor[J]. Bioresource Technology, 2014,167(3):510-513.
|
[20] |
靳小蓓,巢云龙,李宏君,等.磁场与微生物固定技术处理酸性镀铜废水[J]. 环境工程学报, 2016,10(3):1041-1047.
|
[21] |
赵天涛,何芝,张丽杰,等.甲烷及三氯乙烯驯化对垃圾填埋场覆盖土细菌群落结构的影响[J]. 应用生态学报, 2017,28(5):1707-1715.
|
[22] |
Mago? T, Salzberg S L. FLASH:fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
|
[23] |
Bokulich N A, Subramanian S, Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon Sequencing[J]. Nature methods, 2013,10(1):57-59.
|
[24] |
Caporaso J G, Kuczynski J, Stombaugh J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nature methods, 2010,7(5):335-336.
|
[25] |
Edgar R C, Haas B J,Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011,27(16):2194-2200.
|
[26] |
Haas B J, Gevers D, Earl A M, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Genome research, 2011,21(3):494-504.
|
[27] |
Edgar R C. UPARSE:highly accurate OTU sequences from microbial amplicon reads[J]. Nature methods, 2013,10(10):996-998.
|
[28] |
周晓玮,陆宇苗,陈露,等.磁场对短程硝化工艺运行效果的影响[J]. 环境工程, 2017,35(3):34-37.
|
[29] |
Gao M X, Zhang J L, Feng H. Extremely low frequency magnetic field effects on metabolite of Aspergillus niger [J]. Bioelectromagnetics, 2011,32(1):73-78.
|
[30] |
Lee E Y. Continuous treatment of gas-phase trichloroethylene by Burkholderia cepacia G4 in a two-stage continuous stirred tank reactor/trickling biofilter system[J]. Journal of Bioscience and Bioengineering, 2003,96(6):572-574.
|
[31] |
Filipi? J, Kraigher B, Tepuš B, et al. Effect of low-density static magnetic field on the oxidation of ammonium by Nitrosomonas europaea and by activated sludge in municipal wastewater[J]. Food Technology and Biotechnology, 2015,53(2):201-206.
|
[32] |
隋卫燕,宋鹏,韩甜甜,等.磁场强化活性污泥法处理城镇污水研究[J]. 安徽农业科学, 2011,39(33):20469-20471.
|
[33] |
Niu C, Liang W, Ren H, et al. Enhancement of activated sludge activity by 10-50mT static magnetic field intensity at low temperature[J]. Bioresource Technology, 2014,159:48-54.
|
[34] |
靳峰,刘陶,李发荣,等.静磁场处理液体培养基对三种需氧菌生长的影响[J]. 生物医学工程学杂志, 2009,4:757-760.
|
[35] |
张秀,夏运生,尚艺婕,等.生物质炭对镉污染土壤微生物多样性的影响[J]. 中国环境科学, 2017,37(1):252-262.
|
[36] |
Fang H, Cai L, Yu Y L, et al. Metagenomic analysis reveals the prevalence of biodegradation genes for organic pollutants in activated sludge[J]. Bioresource Technology, 2013,129(2):209-218.
|
[37] |
Jiang Y, Wei L, Zhang H N, et al. Removal performance and microbial community in a sequencing batch reactor treating hypersaline phenol-laden wastewater[J]. Bioresource Technology, 2016,218:146-152.
|
[38] |
Yang F, Jiang Q, Zhu M R, et al. Effects of biochars and MWNTs on biodegradation behavior of atrazine by Acinetobacter lwoffii DNS32[J]. Science of the Total Environment, 2017,577:54-60.
|
[39] |
Thotsaporna K, Tinikulb R, Maenpuen S, et al. Enzymes in the p-hydroxypheny lacetate degradation pathway of Acinetobacter baumannii [J]. Journal of Molecular Catalysis B:Enzymatic, 2016,134:353-366.
|
[40] |
Chen Y, Yu B, Lin J J. et al. Simultaneous adsorption and biodegradation (SAB) of diesel oil using immobilized Acinetobacter venetianus on porous material[J]. Chemical Engineering Journal, 2016,289:463-470.
|
[41] |
姜岩,张晓华,杨颖,等.基于约氏不动杆菌的萘生物降解特性[J]. 化工学报, 2016,67(9):3981-3987.
|
[42] |
纪南南,武文丽,颜家保,等.耐酚异养硝化菌的筛选及其对苯酚降解特性的研究[J]. 化学工程师, 2015,29(10):1-3.
|
[43] |
张海涛,刘文斌,杨海君,等.一株耐盐高效苯酚降解菌的筛选、鉴定、响应面法优化与降酚动力学研究[J]. 环境科学学报, 2016,36(9):3200-3207.
|
[44] |
Sharma V, Lin J. Draft genome sequence of phenol degrading Acinetobacter sp. Strain V2, isolated from oil contaminated soil[J]. Brazilian Journal of Microbiology, 2017,48(2):189-190.
|
[45] |
Qu J, Xu Y, Ai G M, et al. Novel Chryseobacterium sp. PYR2degrades various organochlorine pesticides (OCPs) and achieves enhancing removal and complete degradation of DDT in highly contaminated soil[J]. Journal of Environmental Management, 2015,161:350-357.
|
[46] |
李静,李文英.喹啉降解菌筛选及其对焦化废水强化处理[J]. 环境科学, 2015,36(4):1385-1391.
|
[47] |
丁子洋,于博文,王硕,等.降解菌株的筛选及其对聚丁二酸丁二醇酯薄膜的降解[J]. 中国塑料, 2017,31(3):94-99.
|
[48] |
Singleton D R, Jones M D, Richardson S D, et al. Pyrosequence analyses of bacterial communities during simulated in situ bioremediation of polycyclic aromatic hydrocarbon-contaminated soil[J]. Applied Microbiology and Biotechnology, 2013,97(18):8381-8391.
|
[49] |
Heylen K, Lebbe P D, Vos L. Acidovorax caeni sp nov., a denitrifying species with genetically diverse isolates from activated sludge[J]. International Journal of Systematic and Evolutionary Microbiology, 2008,58(1):73-77.
|
|
|
|