|
|
Research on optimal operation by a combined biological adsorption-MBR-Sulfur/Iron autotrophic denitrification process |
ZHI Yao1, ZHANG Guang-sheng1,2,3, QIAN Kai1, LI Ji1,2,3, WANG Shuo1,2,3 |
1. School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; 2. Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China; 3. Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou 215009, China |
|
|
Abstract In order to realize the effect of deep nitrogen and phosphorus removal, a combined biological adsorption-MBR-sulfur/iron autotrophic denitrification process was optimized, and the influence of HRT and volume ratio of sulfur-iron to nitrogen and phosphorus removal were both investigated. The experimental results showed that the optimal contaminants removal performance was achieved when the respective HRT of MBR and sulfur/iron autotrophic denitrification filter was 9h and 3h, and 63% of COD was adsorbed by biological adsorption process. The average effluent COD, NH4+-N, NO3--N and TN were 18.9, 0.36, 0 and 3.3mg/L, respectively, which was beneficial for deep nitrogen and phosphorus removal. In addition, the average effluent TP was as low as 0.29mg/L as the volume ratio of sulfur and iron was 3:1 in the sulfur/iron autotrophic denitrification filter. Most of nitrate was reduced in the region of 10 to 30cm height in the sulfur/iron autotrophic denitrification filter, and the corresponding nitrogen removal rate was 46.1gNO3--N/(m3×h). Furthermore, it was found that the membrane fouling could be effectively alleviated by providing intermittent suction to membrane module and high aeration rate to MBR process.
|
Received: 30 October 2017
|
|
Corresponding Authors:
王硕,副教授,shuowang@jiangnan.edu.cn
E-mail: shuowang@jiangnan.edu.cn
|
|
|
|
[1] |
胡学斌,杨柳,吉芳英,等.低碳源城市污水的低氧同步脱氮除磷研究[J]. 中国给水排水, 2009,25(13):16-19.
|
[2] |
孙永利,许光明,游佳,等.城镇污水处理厂外加商业碳源的选择[J]. 中国给水排水, 2010,26(19):84-86.
|
[3] |
曹贵华,黄勇,潘杨.常规生物脱氮除磷工艺中问题及对策[J]. 水处理技术, 2009,35(3):102-106.
|
[4] |
Kim D, Kim T S, Ryu H D, et al. Treatment of low carbon-to-nitrogen wastewater using two-stage sequencing batch reactor with independent nitrification[J]. Process Biochemistry, 2008, 43(4):406-413.
|
[5] |
Zhang X, Liang Y, Ma Y, et al. Ammonia removal and microbial characteristics of partial nitrification in biofilm and activated sludge treating low strength sewage at low temperature[J]. Ecological Engineering, 2016,93:104-111
|
[6] |
孙慧,郑兴灿,孙永利,等.外加碳源对改良A2/O工艺反硝化除磷的影响[J]. 中国给水排水, 2010,26(13):82-85.
|
[7] |
郑兴灿.AB工艺的运行原理与特性[J]. 中国给水排水, 1989,5(6):42-45.
|
[8] |
员小峰.AB法机理探讨[J]. 中国给水排水, 1992,(2):30-32.
|
[9] |
周健.AB法A段处理城市污水效能与机理研究[D]. 重庆:重庆大学, 2004.
|
[10] |
Kharraz J A, Bilad M R, Arafat H A. Simple and effective corrugation of PVDF membranes for enhanced MBR performance[J]. Journal of Membrane Science, 2015,475:91-100.
|
[11] |
Mutamim N S A, Noor Z Z, Hassan M A A, et al. Membrane bioreactor:Applications and limitations in treating high strength industrial wastewater[J]. Chemical Engineering Journal, 2013, 225(6):109-119.
|
[12] |
Barreto C M, Garcia H A, Hooijmans C M, et al. Assessing the performance of an MBR operated at high biomass concentrations[J]. International Biodeterioration & Biodegradation, 2017,119:528-537.
|
[13] |
Friha I, Karray F, Feki F, et al. Treatment of cosmetic industry wastewater by submerged membrane bioreactor with consideration of microbial community dynamics[J]. International Biodeterioration & Biodegradation, 2014,88:125-133.
|
[14] |
袁玉玲,李睿华.硫磺/石灰石自养反硝化系统脱氮除磷性能研究[J]. 环境科学, 2011,32(7):2041-2046.
|
[15] |
车轩,罗国芝,谭洪新,等.脱氮硫杆菌的分离鉴定和反硝化特性研究[J]. 环境科学, 2008,29(10):2931-2937.
|
[16] |
Wang Y, Bott C, Nerenberg R. Sulfur-based denitrification:Effect of biofilm development on denitrification fluxes[J]. Water Research, 2016,100:184-193.
|
[17] |
苏晓磊,刘雪洁,梁鹏,等.硫-硫铁复合床深度脱氮除磷[J]. 化学工业与工程, 2015,32(4):63-67.
|
[18] |
Kong Z, Li L, Feng C, et al. Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment[J]. Bioresource Technology, 2016,211:125.
|
[19] |
国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[S]. 北京:中国环境科学出版社, 2009.
|
[20] |
刘琰,李剑超,赵英花,等.海绵铁转化地下水中硝酸盐的试验研究[J]. 环境污染与防治, 2012,34(11):20-24.
|
[21] |
范潇梦,关小红,马军.零价铁还原水中硝酸盐的机理及影响因素[J]. 中国给水排水, 2008,24(14):5-9.
|
[22] |
周玲,李铁龙,全化民,等.还原铁粉去除地下水中硝酸盐氮的研究.农业环境科学学报, 2006,25(2):368-372.
|
[23] |
郭小马,赵焱,王开演,等.分格复合填料曝气生物滤池脱氮除磷特性及微生物群落特征分析[J]. 环境科学学报, 2015, 35(1):152-160.
|
[24] |
陈永志,彭永臻,王建华,等.A2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷[J]. 环境科学学报, 2010,30(10):1957-1963.
|
[25] |
吴昌永,彭永臻,彭轶.A2O工艺处理低C/N比生活污水的试验研究[J]. 化工学报, 2008,59(12):3126-3131.
|
[26] |
顾升波,李振川,李艺.A/O-MBBR组合工艺和A/O工艺处理市政污水的影响因素研究[J]. 给水排水, 2017,(2):49-55.
|
[27] |
王旭东,马亚斌,王磊,等.倒置A2/O-MBR组合工艺处理生活污水效能及膜污染特性[J]. 环境科学, 2015,36(10):3743-3748.
|
[28] |
Lee J K, Choi C K, Lee K H, et al. Mass balance of nitrogen, and estimates of COD, nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system[J]. Bioresource Technology, 2008,99(16):7788-7796.
|
[29] |
吴志超,王志伟,顾国维,等.厌氧膜生物反应器污泥组分对膜污染的影响[J]. 中国环境科学, 2005,25(2):226-230.
|
[30] |
中华人民共和国卫生部和国家标准化管理委员会.生活饮用水卫生标准[S]. GB5749-2006, 2006.
|
[31] |
国家环境保护总局.地表水环境质量标准[S]. GB3838-2002, 2002.
|
|
|
|