|
|
Research on pH and adsorption properties of N and K cations of biochar based on gray value |
WANG Ming-feng, YANG Lu-han, ZHANG Zheng-yan, WU Xi-wen, ZHONG Xuan, JIANG En-cheng |
Key laboratory of Ministry of Agriculture Energy Plant Resources and the Use, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China |
|
|
Abstract According to statistics of the past 40years, average fertilizer use efficiency is only about 50%. The low fertilizer efficiency not only causes energy loss but also causes environmental pollution and ground and surface water contamination. A new fertilizer using biochar as carrier has a great potential to solve this issue. In this research, the biochars made from rice husk, cassava straw and corn stover were obtained by a horizontal fixed bed quartz tube pyrolysis reactor with varied temperatures (350, 450, 500, 550, and 600℃). The RGB values and corresponding gray value of these biochars were analyzed by image recognition technology. The relationship between pH and gray value and the relationship between adsorption capacities of N and K cations (NH4+-N and K+-K,) and gray value were studied. In general, the pH value of biochar increased as gray value increased with R2 of 0.9766, 0.9592, and 0.9219, respectively, and the trend fitted well with the DoseResp model. NH4+-N and K+-K adsorption capacity of those three biochars followed the one-dimensional high-order nonlinear models with R2 ranged from 0.8595 to 0.9999, except the negative linear correlation between K+-K adsorption capacity and gray value for corn stover. This study provides theoretical basis for development of rapid method to predict pH and cation adsorption properties of biochar, and also has a potential to develop portable equipment for online testing.
|
Received: 08 April 2018
|
|
|
|
|
[1] |
Cao Xinde, Harris W. Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J]. Bioresource Technology, 2010,101(14):5222-5228.
|
[2] |
周凤,许晨阳,金永亮,等.生物炭对土壤微生物C源代谢活性的影响[J]. 中国环境科学, 2017,37(11):4202-4211.
|
[3] |
李飞跃,谢越,石磊,等.稻壳生物质炭对水中氨氮的吸附[J]. 环境工程学报, 2015,9(3):1221-1226.
|
[4] |
Nielsen S, Minchin T, Kimber S, et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers[J]. Agriculture Ecosystems & Environment, 2014,191(6):73-82.
|
[5] |
Steiner C, Garcia M, Zech W. Effects of charcoal as slow release nutrient carrier on N-P-K dynamics and soil microbial population:Pot experiments with ferralsol substrate[M]. Netherlands:Springer, 2009:325-338.
|
[6] |
刘冲,刘晓文,吴文成,等.生物炭及炭基肥对油麦菜生长及吸收重金属的影响[J]. 中国环境科学, 2016,36(10):3064-3070.
|
[7] |
俞映倞,王悦满,侯朋福,等.生物炭负载氮还田对水稻生长、根系形态及氮素利用的影响[J]. 环境科学, 2018,11:1-14.
|
[8] |
Yanxue Cai, Hejinyan Qi. Sorption/Desorption Behavior and Mechanism of NH4+ by Biochar as a Nitrogen Fertilizer Sustained-Release Material[J]. Journal of Agricultural and Food Chemistry, 2016,64:4958-4964.
|
[9] |
Takaya C A, Fletcher L A, Singh S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016,145:518-527.
|
[10] |
武丽君,王朝旭,张峰,等.玉米秸秆和玉米芯生物炭对水溶液中无机氮的吸附性能[J]. 中国环境科学, 2016,36(1):74-81.
|
[11] |
Mukherjee, Atanu, Zimmerman, et al. Organic carbon and nutrient release from a range of laboratory-produced; biochars and biochar-soil mixtures[J]. Geoderma, 2013,193(2):122-130.
|
[12] |
何绪生,张树清,佘雕,等.生物炭对土壤肥料的作用及未来研究[J]. 中国农学通报, 2011,27(15):16-25.
|
[13] |
王明峰,陈晓堃,蒋恩臣,等.基于扫描图像RGB分析的生物炭吸附特性研究[J]. 农业机械学报, 2015,46(12):212-217.
|
[14] |
仇瑞承,张漫,魏爽,等.基于RGB-D相机的玉米茎粗测量方法[J]. 农业工程学报, 2017,33(z1):170-176.
|
[15] |
张铭钧,李煊,王玉甲.基于灰度化权值调整的水下彩色图像分割[J]. 哈尔滨工程大学学报, 2015,36(5):707-713.
|
[16] |
Takaya C A, Fletcher L A, Singh S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016,145:518-527.
|
[17] |
Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management, 2011,27(1):110-115.
|
[18] |
罗煜,赵立欣,孟海波,等.不同温度下热裂解芒草生物炭的理化特征分析[J]. 农业工程学报, 2013,29(13):208-218.
|
[19] |
袁金华,徐仁扣.生物炭的性质及其对土壤环境功能影响的研究进展[J]. 生态环境学报, 2011,20(4):779-785.
|
[20] |
Nguyen BT, Lehmann J, Hockaday WC, et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science and Technology, 2010,44:3324-3331.
|
[21] |
Novak JM, Lima I, Xing B, et al. Characterization of designer biochar produced at different temperatures and their effects on a loamy sand[J]. Annals of Environmental Science, 2009,3:195-206.
|
[22] |
Zeng Z, Zhang S D, Li T Q, et al. Sorption of ammonium and phosphate from aqueous solution by biochar derived from phytoremediation plants[J]. Journal of Zhejiang University Science B Biomedicine & Biotechnology, 2013,14(12):1152-1161.
|
[23] |
Wang Z, Guo H, Shen F, et al. Biochar produced from oak sawdust by lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3-), and phosphate(PO43-)[J]. Chemosphere, 2015a, 119:646-653.
|
[24] |
Jassal R S, Johnson M S, Molodovskaya M, et al. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality[J]. Journal of Environmental Management, 2015,152(24):140-144.
|
[25] |
Chan K Y, Van Zwieten L, Meszaros I, et al. Agronomic values of green waste biochar as a soil amendment[J]. Soil Research, 2008, 45(8):629-634.
|
[26] |
姜敏,汪霄,张润花,等.生物炭对土壤不同形态钾素含量的影响及机制初探[J]. 土壤通报, 2016,47(6):1433-1441.
|
[27] |
郭平,王观竹,许梦,等.不同热解温度下生物质废弃物制备的生物质炭组成及结构特征[J]. 吉林大学学报(理学版), 2014,52(4):855-860.
|
[28] |
黄国祥.RGB颜色空间及其应用研究[D]. 中南大学, 2002.
|
[29] |
王中慧,陈德珍,王海.污泥裂解过程的形貌学特征参数研究[J]. 环境工程学报, 2011,5(11):2610-2614.
|
[30] |
马锋锋,赵保卫,刁静茹.小麦秸秆生物炭对水中Cd2+的吸附特性研究[J]. 中国环境科学, 2017,37(2):551-559.
|
[31] |
韩鲁佳,李彦霏,刘贤,等.生物炭吸附水体中重金属机理与工艺研究进展[J]. 农业机械学报, 2017,48(11):1-11.
|
[32] |
Halim A A, Latif M T, Ithnin A. Ammonia removal from aqueous solution using organic acid modified activated carbon[J]. World Applied Sciences Journal, 2013,24(1):1-6.
|
[33] |
Li M, Liu Q, Guo L, et al. Cu (Ⅱ) removal from aqueous solution by Spartina alterniflora derived biochar[J]. Bioresource Technology, 2013,141(4):83-88.
|
[34] |
Abdel-Fattah T M, Mahmoud M E, Ahmed S B, et al. Biochar from woody biomass for removing metal contaminants and carbon sequestration[J]. Journal of Industrial and Engineering Chemistry, 2015,22:103-109.
|
[35] |
Tan X F, Liu Y G, Zeng G M, et al. Application of biochar for the removal of pollutants from aqueous solutions[J]. Chemosphere, 2015, 125:70-85.
|
[36] |
郜礼阳,邓金环,唐国强,等.不同温度桉树叶生物炭对Cd2+的吸附特性及机制[J]. 中国环境科学, 2018,38(3):1001-1009.
|
[37] |
Lei T, Zhou J, Xu C, et al. Soil Biochar Quantification via Hyperspectral Unmixing[C]. Digital Image Computing:Techniques and Applications (DICTA), 2013 International Conference on IEEE, 2013:1-8.
|
[38] |
Sadaka S, Sharara M A, Ashworth A, et al. Characterization of biochar from switchgrass carbonization[J]. Energies, 2014,7(2):548-567.
|
[39] |
GB/T 28731-2012固体生物质燃料工业分析方法[S].
|
[40] |
GB/T22923-2008肥料中氮、磷、钾的自动分析仪测定法[S].
|
|
|
|