|
|
Distribution characteristics of sulfur species and isotopes in a copper tailing at Tongling, Anhui Province |
WANG Xiao-fang, LI Fang-xiao, HUANG Tao, SUN Qing-ye |
School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China |
|
|
Abstract In this study, the composition and distribution characteristics of physiochemical proxies, sulfur species and sulfur isotope of sulfate in S and SP profiles collected from a copper tailing of Shuimuchong were analyzed and discussed. The results showed that profiles of S and SP were general acidic, with a pH value of 2.59~6.12 and 3.50~6.27, respectively. The oxidation-reduction potential (Eh) of S and SP increased obviously from the bottom up, with an Eh value of 66~457mV and -37~307mV, respectively. The content of acid volatile sulfur (AVS) in S and SP profiles was 0~62.36mg/g and 0~3.44mg/g; while the pyrite sulfur (CRS) was 0.70~32.30mg/g and 0.17~5.39mg/g, respectively. The content of AVS and CRS in these two profiles showed a similar decrease trend from the bottom up, and AVS was oxidized earlier than CRS. The content of elemental sulfur (ES) in S and SP profiles was 0~8.83mg/g and 0~3.62mg/g, without clear trend in depths. The content of sulfate was 8.44~66.34mg/g and 8.48~29.87mg/g, respectively; they decreased from bottom-up in these two profiles. The hardpan (iron hydroxide) at 11.5~16.5cm and 18~54cm in S and SP blocked the transport of oxygen and water from the top down, slowed the oxidation of sulfide in down layers, and formed a sulfate-rich zone. The total sulfur (TS) of these two profiles was 9.18~109.69mg/g and 12.38~37.72mg/g, respectively, and the lower values in up layers were likely due to the surface leaching. Generally, the content of TS and sulfur species in SP profile was lower than those in S, suggested more intense leaching. The δ34S of sulfate in S and SP was -3.32‰~13.43‰ and -3.08‰ ~1.80‰, respectively. An exceptional δ34S of 13.43‰ in S-9layer suggested a source of anhydrite, while others indicated a source of sulfide.
|
Received: 14 August 2018
|
|
|
|
|
[1] |
党志,郑刘春,卢桂宁,等.矿区污染源头控制:矿山废水中重金属的吸附去除[M]. 北京:科学出版社, 2015:5. Dang Z, Zheng L C, Lu G N, et al. Source control of mine pollution:adsorption and removal of heavy metals from mine wastewater[M]. Beijing:Science Press, 2015.
|
[2] |
Akcil A, Koldas S. Acid mine drainage (AMD):causes, treatment and case studies[J]. Journal of Cleaner Production, 2006,14(12):1139-1145.
|
[3] |
何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险评价[J]. 环境科学, 1999,20(1):7-10. He M C, Wang Z J, Tang H X. Pollution and ecological risk assessment for heavy metals in sediments of Le'an River[J]. Environmental Science, 1999,20(1):7-10.
|
[4] |
Johnson D B, Hallberg K B. Acid mine drainage remediation options:a review[J]. Science of the Total Environment, 2005,338(1/2):3-14.
|
[5] |
魏榕,黄健.酸性矿山废水的污染与处理研究[J]. 能源与环境, 2006,(2):31-33. Wei R, Huang J. Study on pollution and treatment of acidic mine drainage[J]. Energy and Environment, 2006,(2):31-33.
|
[6] |
Gbadebo A M, Ekwue Y A. Heavy metal contamination in tailings and rock samples from an abandoned gold mine in southwestern Nigeria[J]. Environmental Monitoring and Assessment, 2014,186(1):165-174.
|
[7] |
邢馨,甘昊,盛敏敏.浅析铜陵地区尾矿现状及尾矿综合利用途径[J]. 河南科技, 2013,(13):205-206. Xing X, Gan H, Sheng M M. A brief analysis of the present situation of tailings in Tongling area and the ways of comprehensive utilization of tailings[J]. Journal of Henan Science and Technology, 2013,(13):205-206.
|
[8] |
王少华,杨劼,刘苏明,等.铜陵狮子山杨山冲尾矿库重金属元素释放的环境效应[J]. 高校地质学报, 2011,17(1):93-100. Wang S H, Yang J, Liu S M, et al. Environmental effects of heavy metal elements release in Yangshanchong tailing pool, Shizishan, Tongling, Anhui Province[J]. Geological Journal of China Universities, 2011,17(1):93-100.
|
[9] |
魏伟,王丽,周平,等.安徽铜陵地区河流生态系统健康的多指标评价[J]. 中国环境科学, 2013,33(4):691-699. Wei W, Wang L, Zhou P, et al. Multi-variable assessment of river ecosystem health in Tongling of Anhui Province[J]. China Environmental Science, 2013,33(4):691-699.
|
[10] |
宣淮翔.铜尾矿不同氧化层中微生物多样性研究[D]. 合肥:安徽大学, 2011. Xuan H X. Microbial diversity in copper mine tailings with different oxidized statuses[D]. Hefei:Anhui University, 2011.
|
[11] |
朱翔宇,王汝成,陆现彩,等.安徽铜陵杨山冲浅层富硫化物尾矿中砷的赋存状态[J]. 岩石矿物学杂志, 2013,32(6):918-924. Zhu X Y, Wang R C, Lu X C, et al. Modes of occurrence of aarsenic in surface sulfide-rich tailings of Yangshanchong, Tongling, Anhui Province[J]. Acta Petrologica Et Mineralogica, 2013,32(6):918-924.
|
[12] |
Burton E D, Sullivan L A, Bush R T, et al. A simple and inexpensive chromium-reducible sulfur method for acid-sulfate soils[J]. Applied Geochemistry, 2008,23(9):2759-2766.
|
[13] |
单孝全,陈斌,铁军,等.土壤和河流沉积物中硫的形态分析[J]. 环境科学学报, 1991,(2):172-177. Shan X Q, Chen B, Tie J, et al. Speciation analysis of sulfur in soil and river sediments[J]. Acta Scientiae Circumstantiae, 1991,(2):172-177.
|
[14] |
Boman A, Åström M, Fröjdö S. Sulfur dynamics in boreal acid sulfate soils rich in metastable iron sulfide The role of artificial drainage[J]. Chemical Geology, 2008,255(1/2):68-77.
|
[15] |
Burton E D, Bush R T, Sullivan L A, et al. Mobility of arsenic and selected metals during re-flooding of iron-and organic-rich acid-sulfate soil[J]. Chemical Geology, 2008,253(1/2):64-73.
|
[16] |
张伟,张丽丽.喀斯特小流域黄壤硫同位素组成特征——对环境过程和效应的指示[J]. 中国环境科学, 2016,36(9):2730-2740. Zhang W, Zhang L L. Sulfur isotopic compositions in yellow soil of karst small catchment-Implications for environmental processes and effects[J]. China Evironmental Science, 2016,36(9):2730-2740.
|
[17] |
席明杰,马生明,朱立新,等.硫同位素在地球化学异常成因研究中的应用[J]. 地质学报, 2009,83(5):705-718. Xi M J, Ma S M, Zhu L X, et al. Application of sulphur isotope in the study of the origin of geochemical anomalies[J]. Acta Geologica Sinica, 2009,83(5):705-718.
|
[18] |
过仕民,李冬.尾矿库无土植被护坡工程技术研究[J]. 矿业快报, 2005,10:23-27. Guo S M, Li D. Research on landless vegetation slope protection engineering technology of tailing dam[J]. Express Information of Mining Industry, 2005,10:23-27.
|
[19] |
徐德聪,詹婧,陈政,等.种植香根草对铜尾矿废弃地基质化学和生物学性质的影响[J]. 生态学报, 2012,32(18):5683-5691. Xu D C, Zhan J, Chen Z, et al. Effects of Vetiveria zizanioides L. growth on chemical and biological properties of copper mine tailing wastelands[J]. Acta Ecologica Sinica, 2012,32(18):5683-5691.
|
[20] |
张炜华.高频红外吸收光谱法测定铝土矿赤泥中总碳和总硫含量[J]. 中国无机分析化学, 2013,3:12-16. Zhang W H. Determination of total carbon and sulfur in red mud of bauxite by high frequency infrared absorption spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2013,3:12-16.
|
[21] |
Yin G, Catalan L J. Use of alkaline extraction to quantify sulfate concentration in oxidized mine tailings[J]. Journal of Environmental Quality, 2003,32(6):15-6.
|
[22] |
陈梅芹.硫酸根在金属硫化物矿区AMD污染河流中的迁移过程及其作用机制[D]. 广州:华南理工大学, 2015. Chen M Q. Sulfate migration and its mechanism in a river affected by acid mine drainage in metal sulfide mining area[D]. Guangzhou:South China University of Technology, 2015.
|
[23] |
Yang C F, Lu G N, Chen M Q, et al. Spatial and temporal distributions of sulfur species in paddy soils affected by acid mine drainage in Dabaoshan sulfide mining area, South China[J]. Geoderma, 2016,281:21-29.
|
[24] |
孙启耀.河口沉积物硫的地球化学特征及其与铁和磷的耦合机制初步研究[D]. 烟台:中国科学院大学, 2016. Sun Q Y. Geochemical characteristics of sulfur and its coupling mechanism with iron and phosphorus in estuary sediments[D]. Yantai University of Chinese Academy of Sciences, 2016.
|
[25] |
朱瑾灿,吴雨琛,尹洪斌.太湖蓝藻聚集区沉积物硫形态的时空变异特征[J]. 中国环境科学, 2017,37(12):4690-4700. Zhu J C, Wu Y C, Yin H B. Temporal and spatial variations of sulfur speciations in the sediments of algae accumulation area in Lake Taihu[J]. China Environmental Science, 2017,37(12):4690-4700.
|
[26] |
Yang C M, Wu Y Q, Zhang F, et al. Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments from a source water reservoir[J]. Chemical Speciation & Bioavailability, 2016,28(1-4):133-141.
|
[27] |
Lazaro I, Cruz R, Gonzalez I, et al. Electrochemical oxidation of arsenopyrute in acidic media[J]. International Journal of Mineral Processing, 1997,50(1):63-75.
|
[28] |
Sterckeman T, Douay F, Proix N, et al. Vertical distribution of Cd, Pb and Zn in soils near smelters in the north of France[J]. Environment Pollution, 2000,107:377-389.
|
[29] |
Zhou J M, Dang Z, Cai M F, et al. Soil heavy metal pollution around the Dabaoshan Mine, Guangdong Province, China[J]. Pedosphere, 2007,17(5):588-594.
|
[30] |
Lin Z. Mobilization and retention of heavy metals in mill-tailings from Garpenberg sulfide mines, Sweden[J]. Science of the Total Environment, 1997,198(1):13-31.
|
[31] |
Alakangas L, Öhlander B. Formation and composition of cemented layers in low-sulphide mine tailings, Laver, northern Sweden[J]. Environmental Geology, 2006,50(6):809-819.
|
[32] |
贺金刚,张亚先,于菲. 黄铁矿氧化对尾矿库的影响初探[J]. 中国钨业, 2015,30(6):28-34. He J G, Zhang Y X, Yu F. Preliminary study on the effect of pyrite oxidation on tailings reservoir[J]. China Tungsten Industry, 2015, 30(6):28-34.
|
[33] |
周元祥,岳书仓,周涛发.安徽铜陵杨山冲尾矿库尾砂重金属元素的迁移规律[J]. 环境科学研究, 2010,23(4):497-503. Zhou Y X, Yue S C, Zhou T F. Migration of heavy metals in Yangshanchong tailings impoundment in Tongling, Anhui Province.[J]. Research of Environmental Sciences, 2010,23(4):497-503.
|
[34] |
雷良奇,史振环,莫佳,等.黄沙坪碳酸盐型尾矿氧化剖面特征及酸化机制[J]. 地球与环境, 2015,43(2):173-182. Lei L Q, Shi Z H, Mo J, et al. Characteristics of oxidation profile and acidizing mechanism of carbonate tailings in Huangshaping[J]. Earth and Environment, 2015,43(2):173-182.
|
[35] |
Kwong Y T J, Swerhone G W, Lawrence J R. Galvanic sulphide oxidation as a metal-leaching mechanism and its environmental implications[J]. Geochemistry:Exploration, Environment, Analysis, 2003,3(4):337-343.
|
[36] |
陈天虎,冯军会,徐晓春,等.尾矿中硫化物风化氧化模拟实验研究[J]. 岩石矿物学杂志, 2002,(3):298-302. Chen T H, Feng J H, Xu X L, et al. Simulation experiments on weathering and oxidation of sulfide minerals in mine tailings[J]. Acta Petrologica Et Mineralogica, 2002,(3):298-302.
|
[37] |
Khademi H, Mermut A, Krouse H. Sulfur isotope geochemistry of gypsiferous Aridisols from central Iran[J]. Geoderma, 1997,80(1):195-209.
|
[38] |
Meysman F J R, Middelburg J J. Acid-volatile sulfide (AVS)-A comment[J]. Marine Chemistry, 2005,97(3):206-212.
|
[39] |
Otero X L, Ferreira T O, Vidal-Torrado P, et al. Spatial variation in pore water geochemistry in a mangrove system (Pai Matos island, Cananeia-Brazil)[J]. Applied Geochemistry, 2006,21(12).
|
[40] |
孙青,邢辉,何斌,等.安徽铜陵狮子山硫化物矿山酸矿水中微生物功能群的研究[J]. 岩石矿物学杂志, 2009,28(6):547-552. Sun Q, Xing H, He B, et al. An investigation into microbial function groups of acid mine drainage in the Shizishan sulfide mine, Tongling, Anhui Province[J]. Acta Petrologica Et Mineralogica, 2009,28(6):547-552.
|
[41] |
黄璐,梁文英,严畅,等.安徽铜陵酸性矿山排水中霉菌TY6-2的生物矿化作用实验研究[J]. 南京大学学报(自然科学), 2017,53(5):841-848. Huang L, Liang W Y, Yan C, et al. A study on the biomineralizition by TY6-2, a fungus isolated from acid mine environment in Tongling, Anhui Province[J]. Journal of Nanjing University (Natural Science), 2017,53(5):841-848.
|
[42] |
Bao H, Gu B. Natural perchlorate has a unique oxygen isotope signature[J]. Environmental Science & Technology, 2004,38(19):5073-5077.
|
[43] |
侯增谦,杨竹森,吕庆田,等.安徽铜陵冬瓜山大型铜矿:海底喷流-沉积与矽卡岩化叠加复合成矿过程[J]. 地质学报, 2011,85(5):659-686. Hou Z Q, Yang Z S, Lv Q T, et al. Large-scale dongguashan copper deposit in Tongling, Anhui Province:Compound mineralization process of seafloor jet deposition and skarnization[J]. Acta Geologica Sinica, 2011,85(5):659-686.
|
|
|
|