|
|
Fingerprints of radionuclides in modern coral skeletons in the South China Sea |
LIN Wu-hui1,2, YU Ke-fu1,2, DENG Fang-fang3, WANG Ying-hui1,2, FENG Yu2, LIU Xin-ming4, MO Zhen-ni4, MA Hao5 |
1. Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, China;
2. School of Marine Sciences, Guangxi University, Nanning 530004, China;
3. Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China;
4. Guangxi Academy of Oceanography, Nanning 530022, China;
5. Department of Engineering Physics, Tsinghua University, Beijing 100084, China |
|
|
Abstract Naturally occurring radionuclides (238U, 226Ra, 228Ra, and 40K) and artificial radionuclides (137Cs and 90Sr) were measured using low background β counter system and High Purity Germanium (HPGe) γ spectrometry in 5 genera of coral skeletons collected from 10 locations in the SCS with a spatial coverage of 1500km. Mean activities in modern coral skeletons decreased from 238U (29.94Bq/kg), 40K (11.72Bq/kg), 228Ra (6.37Bq/kg), 226Ra (3.16Bq/kg), 90Sr (1.21Bq/kg) to 137Cs (<0.06Bq/kg). There were no significant trends of activity in relation to coral genera or distance to the land, with an exception of higher228Ra activity in the fringing reefs than in the atoll reefs. Cross-system comparisons of radioactivity in coral skeletons, sediments nearby or outside coral reefs, and global soil revealed coral reefs as extremely low radiation area on the Earth's surface. It was also found that modern coral skeletons were characterized by two common fingerprints of radionuclides (226Ra/238U and 90Sr/137Cs), including extremely low activity ratio of 226Ra/238U (~0.1) and extremely high activity ratio of 90Sr/137Cs (1000).
|
Received: 06 March 2019
|
|
|
|
|
[1] |
Lin W, Chen L, Yu W, et al. Radioactivity impacts of the Fukushima Nuclear Accident on the atmosphere[J]. Atmospheric Environment, 2015,102:311-322.
|
[2] |
林武辉,陈立奇,何建华,等.日本福岛核事故后的海洋放射性监测进展[J]. 中国环境科学, 2015,35(1):269-276. Lin W H, Chen L Q, He J H, et al. Review on monitoring marine radioactivity since the Fukushima Nuclear Accident[J]. China Environmental Science, 2015,35(1):269-276.
|
[3] |
Lin W, Chen L, Zeng S, et al. Residual β activity of particulate 234Th as a novel proxy for tracking sediment resuspension in the ocean[J]. Scientific reports, 2016,6:27069.
|
[4] |
林武辉,余克服,王英辉,等.海洋沉积过程的铀系放射性核素示踪技术:物源识别、沉积、再悬浮[J]. 海洋地质与第四纪地质, 2019, In Press. Lin W H, Yu K F, Wang Y H, et al. Uranium-series radionuclides as tools for tracking marine sedimentary processes:source identification, sedimentation rate, and sediment resuspension[J]. Marine Geology & Quaternary Geology, 2019, In Press.
|
[5] |
毕倩倩,杜金洲.海洋环境中放射性分析及其应用[J]. 核化学与放射化学, 2015,37(4):193-206. Bi Q Q, Du J Z. Radio-analysis and its application in the marine environment[J]. Journal of Nuclear and Radiochemistry, 2015,37(4):193-206.
|
[6] |
黄奕普,陈敏.海洋同位素示踪技术研究进展[J]. 厦门大学学报, 2001,40(2):512-523. Huang Y P, Chen M. Progress in the isotope tracer technique for marine science[J]. Journal of Xiamen University, 2001,40(2):512-523.
|
[7] |
McKee B A, U-and Th-series nuclides in estuarine environments[M]//Krishnaswami S, Cochran J K, Editors, U-Th series nuclides in aquatic systems. Elsevier., 2008:193-225.
|
[8] |
Charette M A, Moore W S, Burnett W C. Uranium-and thorium-series nuclides as tracers of submarine groundwater discharge[M]//U-Th series nuclides in aquatic systems, Krishnaswami S, Cochran J K, Editors, Elsevier., 2018:155-191.
|
[9] |
Smoak J M, Patchineelam S R. Sediment mixing and accumulation in a mangrove ecosystem:evidence from 210Pb, 234Th and 7Be[J]. Mangroves and Salt Marshes, 1999,3(1):17-27.
|
[10] |
Kadko D, Johns W. Inferring upwelling rates in the equatorial Atlantic using 7Be measurements in the upper ocean[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2011,58(6):647-657.
|
[11] |
Masqué P, Cochran J K, Hirschberg D J, et al. Radionuclides in Arctic sea ice:Tracers of sources, fates and ice transit time scales[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2007,54(8):1289-1310.
|
[12] |
Kadko D. Radioisotopic studies of submarine hydrothermal vents[J]. Reviews of Geophysics, 1996,34(3):349-366.
|
[13] |
Lundstrom C C. Uranium-series disequilibria in mid-ocean ridge basalts:Observations and models of basalt genesis[J]. Reviews in Mineralogy and geochemistry, 2003,52(1):175-214.
|
[14] |
Yu K F. Coral reefs in the South China Sea:Their response to and records on past environmental changes[J]. Science China Earth Sciences, 2012,55(8):1217-1229.
|
[15] |
Hughes T P, Kerry J T, Baird A H, et al. Global warming transforms coral reef assemblages[J]. Nature, 2018,556(7702):492-496.
|
[16] |
Albright R, Takeshita Y, Koweek D A, et al. Carbon dioxide addition to coral reef waters suppresses net community calcification[J]. Nature, 2018,555:516-519.
|
[17] |
Moberg F, Folke C. Ecological goods and services of coral reef ecosystems[J]. Ecological Economics, 1999,29(2):215-233.
|
[18] |
Carvalho F P. Radionuclide concentration processes in marine organisms:A comprehensive review[J]. Journal of Environmental Radioactivity, 2017,186:124-130.
|
[19] |
Yu K, Zhao J, Coral reefs[M]//The South China Sea:paleoceanography and sedimentology, Wang P and Li Q, Editors, Springer, 2019:186-209.
|
[20] |
罗琦.尽快开展南海核动力能源平台建设[J]. 中国核工业, 2014,(3):43-43. Luo Q. Construction of nuclear power energy platform in the south China sea should be carried out as soon as possible[J]. China Nuclear Industry, 2014,(3):43-43.
|
[21] |
李华成,刘聪,劳业程,等.ACPR50S小型堆核电站海上平台形式论证[J]. 广东造船, 2015,34(6):33-35. Li H C, Liu C, Lao Y C, et al. Floating platform type design for ACPR50S small offshore nuclear power plant[J].Guangdong Shipbuilding, 2015,34(6):33-35.
|
[22] |
吕松泽,刘洪君,蔡琦,等.海洋核动力平台核安全监督初探[J]. 科技创新导报, 2016,13(34):46-48. Lv S Z, Liu H J, Cai Q, et al. Preliminary study on nuclear safety supervision of marine nuclear power platforms[J].Science and Technology Innovation Herald, 2016,13(34):46-48.
|
[23] |
林武辉,余克服,王英辉,等.罕见的地表低辐射水平区域:珊瑚礁区[J]. 辐射防护, 2018,38(4):287-292. Lin W H, Yu K F, Wang Y H, et al. Unusual low radiation area on the surface of the earth:coral reefs[J]. Radiation Protection, 2018,38(4):287-292.
|
[24] |
林武辉,余克服,王英辉,等.珊瑚礁区沉积物的极低放射性水平特征与成因[J]. 科学通报, 2018,63(21):2173-2183. Lin W H, Yu K F, Wang Y H, et al. Extremely low radioactivity in marine sediment of coral reefs and its mechanism[J]. Chinese Science Bulletin, 2018,63(21):2173-2183.
|
[25] |
Lin W, Yu K, Wang Y, et al. Radioactive level of coral reefs in the South China Sea[J]. Marine Pollution Bulletin, 2019,142:43-53.
|
[26] |
Lin W, Yu K, Wang Y, et al. Combination of field-based natural gamma radiation and laboratory-based HPGe gamma spectrometry to investigate the natural radionuclides of a long coral core (928m) in the South China Sea[J]. Acta Geologica Sinica (English Edition), 2018, 92(Supp,2):80-83.
|
[27] |
林武辉,余克服,王英辉,等.南海珊瑚骨骼中228Th/228Ra不平衡及其年代学应用初探,[C]//中国海洋学会2017年学术年会,青岛:海洋出版社, 119-124. Lin W H, Yu K F, Wang Y H, et al. Prelimary study of 228Th/228Ra disequilibrium in coral skeletons and its application in coral chronology.[C]//2017Annual Conference of the Chinese Ocean Society. Qingdao:Ocean Press, 2017:119-124.
|
[28] |
Liu X, Lin W. Natural radioactivity in the beach sand and soil along the coastline of Guangxi Province, China[J]. Marine Pollution Bulletin, 2018,135:446-450.
|
[29] |
Cobb K M, Charles C D, Cheng H, et al. U/Th-dating living and young fossil corals from the central tropical Pacific[J]. Earth and Planetary Science Letters, 2003,210(1):91-103.
|
[30] |
Clark T R, Roff G, Zhao J X, et al. U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century[J]. Proceedings of the National Academy of Sciences, 2017,114(39):10350-10355.
|
[31] |
Cheng J P, Kang K J, Li J M, et al. The China Jinping underground laboratory and its early science[J]. Annual Review of Nuclear and Particle Science, 2017,67(1):231-251.
|
[32] |
Zeng Z, Mi Y, Ma H, et al. The characteristics of a low background germanium gamma ray spectrometer at China Jinping underground laboratory[J]. Applied Radiation & Isotopes, 2014,91(11):165-170.
|
[33] |
邓芳芳,林武辉,林静,等.海水中90Sr测量的国际比对研究[J]. 海洋环境科学, 2018,37(3):448-451. Deng F F, Lin W H, Lin J, et al. International comparison of 90Sr analysis in seawater[J]. Marine Environmental Science, 2018,37(3):448-451.
|
[34] |
Zhao J, Yu K, Feng Y. High-precision 238U-234U-230Th disequilibrium dating of the recent past:A review[J]. Quaternary Geochronology, 2009,4(5):423-433.
|
[35] |
Wang L, Ma Z, Sun Z, et al. U concentration and 234U/238U of seawater from the Okinawa Trough and Indian Ocean using MC-ICPMS with SEM protocols[J]. Marine Chemistry, 2017,196(Supplement C):71-80.
|
[36] |
Benninger L K, Dodge R E. Fallout plutonium and natural radionuclides in annual bands of the coral Montastrea annularis, St. Croix, US Virgin Islands[J]. Geochimica et Cosmochimica Acta, 1986,50(12):2785-2797.
|
[37] |
Dodge R E, Thomson J. The natural radiochemical and growth records in contemporary hermatypic corals from the Atlantic and Caribbean[J]. Earth & Planetary Science Letters, 1974,23(3):313-322.
|
[38] |
Moore W S, Krishnaswami S. Coral growth rates using 228Ra and 210Pb[J]. Earth and Planetary Science Letters, 1972,15(2):187-190.
|
[39] |
Cai P, Huang Y, Chen M, et al. New production based on 228Ra-derived nutrient budgets and thorium-estimated POC export at the intercalibration station in the South China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2002,49(1):53-66.
|
[40] |
Kwon E Y, Kim G, Primeau F, et al. Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model[J]. Geophysical Research Letters, 2014,41(23):8438-8444.
|
[41] |
Liu Z, Zhao Y, Colin C, et al. Source-to-sink transport processes of fluvial sediments in the South China Sea[J]. Earth-Science Reviews, 2016,153:238-273.
|
[42] |
Sabatier P, Reyss J L, Hall-Spencer J M, et al. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef[J]. Biogeosciences, 2012,9(3):1253-1265.
|
[43] |
Adkins J F, Henderson G M, Wang S L, et al. Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrata[J]. Earth & Planetary Science Letters, 2004,227(3/4):481-490.
|
[44] |
Andrews A H, Stone R P, Lundstrom C C, et al. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating[J]. Mar. Ecol. Prog. Ser., 2009,397:173-185.
|
[45] |
张晓笛,毕倩倩,蔡炜颖,等.应用210Pb的南海黑角珊瑚定年[J]. 核化学与放射化学, 2015,37(2):120-128. Zhang X D, Bi Q Q, Cai W Y, et al. Application of Radionuclide 210Pb in Dating of Black Coral[J]. Journal of Nuclear and Radiochemistry, 2015,37(2):120-128.
|
[46] |
Simon S, Graham J, Terp S. Uptake of 40K and 137Cs in native plants of the Marshall Islands[J]. Journal of Environmental Radioactivity, 2002,59(2):223-243.
|
[47] |
IAEA, Worldwide Marine Radioactivity Studies (WOMARS):Radionuclide Levels in Oceans and Seas[M]. Vienna:IAEA, 2005.
|
[48] |
IAEA, Sediment Distribution Coefficients and Concentration Factors for Biota in the Marine Environment. 2004, IAEA:Vienna.
|
[49] |
Xiao Y, Liu W, Ma Y, et al. Correlation between δ18O, Sr/Ca and Mg/Ca of coral Acropora and seawater temperature from coral culture experiments[J]. Science China Earth Sciences, 2014,57(5):1048-1060.
|
[50] |
Saha N, Webb G E, Zhao J X. Coral skeletal geochemistry as a monitor of inshore water quality[J]. Science of the Total Environment, 2016,566:652-684.
|
[51] |
Zhou P, Li D, Zhao L, et al. Radioactive status of seawater and its assessment in the northeast South China Sea and the Luzon Strait and its adjacent areas from 2011 to 2014[J]. Marine Pollution Bulletin, 2018,131,Part A:163-173.
|
[52] |
Wu J. Impacts of Fukushima Daiichi Nuclear Power Plant accident on the Western North Pacific and the China Seas:Evaluation based on field observation of 137Cs[J]. Marine Pollution Bulletin, 2018,127:45-53.
|
[53] |
Merz S, Shozugawa K, Steinhauser G. Analysis of Japanese radionuclide monitoring data of food before and after the Fukushima nuclear accident[J]. Environmental Science & Technology, 2015,49(5):2875-2885.
|
[54] |
Toggweiler J, Trumbore S. Bomb-test 90Sr in Pacific and Indian Ocean surface water as recorded by banded corals[J]. Earth and Planetary Science Letters, 1985,74(4):306-314.
|
[55] |
Wu J, Dai M, Xu Y, et al. Sources and accumulation of plutonium in a large Western Pacific marginal sea:The South China Sea[J]. Science of the total environment, 2018,610-611(Supplement C):200-211.
|
[56] |
Bautista A T, Matsuzaki H, Siringan F P. Historical record of nuclear activities from 129I in corals from the northern hemisphere (Philippines)[J]. Journal of Environmental Radioactivity, 2016,164:174-181.
|
[57] |
Chang C C, Burr G S, Jull A J T, et al. Reconstructing surface ocean circulation with 129I time series records from corals[J]. Journal of Environmental Radioactivity, 2016,165(Supplement C):144-150.
|
[58] |
Nozaki Y, Yamamoto Y. Radium-228 based nitrate fluxes in the eastern Indian Ocean and the South China Sea and a silicon-induced "alkalinity pump" hypothesis[J]. Global Biogeochemical Cycles, 2001, 15(3):555-567.
|
[59] |
Wang X, Du J. Submarine groundwater discharge into typical tropical lagoons:A case study in eastern Hainan Island, China[J]. Geochemistry, Geophysics, Geosystems, 2016,17(11):4366-4382.
|
[60] |
UNSCEAR, Sources, effects of ionizing radiation[M]//Report to the general assembly with annex B, UNSCEAR, Editor, United Nations:New York, 2000.
|
[61] |
Lin W, Chen L, Yu W, et al. Radioactive source-term of the Fukushima Nuclear Accident[J]. Science China:Earth Sciences, 2016,59(1):214-222.
|
[62] |
Baskaran M. Dating of biogenic and inorganic carbonates using 210Pb-226Ra disequilibrium method:A review[M]//Handbook of environmental isotope geochemistry:Vol I, Baskaran M, Editor, Springer Berlin Heidelberg:Berlin, Heidelberg, 789-809:2012.
|
[63] |
Ikeuchi Y. Temporal variations of 90Sr and 137Cs concentrations in Japanese coastal surface seawater and sediments from 1974 to 1998[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2003, 50(17):2713-2726.
|
[64] |
Nakamura S, Kajimoto T, Tanaka K, et al. Measurement of 90Sr radioactivity in cesium hot particles originating from the Fukushima Nuclear Power Plant Accident[J]. Journal of Radiation Research, 2018:1-8.
|
|
|
|