|
|
Evaluating of net anthropogenic nitrogen inputs and its influencing factors in the Three Gorges Reservoir Area |
DING Xue-kun1, WANG Yun-qi1,2, HAN Yu-guo1, FU Jing1 |
1. Three-gorges reservoir area(Chongqing) Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China;
2. Jinyun Forest Ecosystem Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China |
|
|
Abstract In this study, the Net Anthropogenic Nitrogen Input (NANI) model was first developed combining data for food/feed, nitrogen fertilizer, atmospheric sedimentation and biological nitrogen fixation. Based on the model, we investigated the spatial and temporal distribution, characteristics of the components and their contribution rate, and influencing factors of the net anthropogenic nitrogen inputs in the Three Gorges Reservoir Area from 2006 to 2016 with one-way ANOVA and gray correlation method. The results showed that:(1) Obvious spatial and temporal differences were found in the NANI estimation of the Three Gorges reservoir area. The NANI amount was 10715.2 and 11974.1kg/(km2·a) in 2006 and 2016, respectively, and from 2006 to 2016, the overall inter-annual trend showed a pattern of rising linearly first and then decreasing. Spatially, the NANI amount was high in the head and tail of the reservoir while low in the hinterland of the reservoir, and high in the south while low in the north. (2) Among the components of NANI in the Three Gorges reservoir area, the nitrogen fertilizer application was the main input source, which accounted for 50%~56% of the total NANI, followed by the atmospheric nitrogen deposition, which accounted for 22%~24% of the NANI. In the correlation analysis, the relationship between the application rate of nitrogen fertilizer and NANI was most significant with R2=0.81 (P<0.0001). (3) The correlations between NANI and the population density, grain yield, gross agricultural product and gross regional product were also high, with the value of 0.901, 0.867, 0.794 and 0.689, respectively. The NANI value increased first with the increase of population density, but reached a plateau stage when the population density reached a certain value (500people/km2). NANI value increased with the increase of cultivated land area, while decreased with the increase of forest area.
|
Received: 10 June 2019
|
|
|
|
|
[1] |
谢德体.三峡库区及上游流域农村面源污染控制技术与工程示范[J]. 乡村科技, 2018,29:117+120. Xie D. Demonstration of rural non-point source pollution control technology and engineering in the Three Gorges reservoir area and upstream basin[J]. Rural technology, 2018,29:117+120.
|
[2] |
杨彦兰,申丽娟,谢德体,等.基于输出系数模型的三峡库区(重庆段)农业面源污染负荷估算[J]. 西南大学学报(自然科学版), 2015, 37(3):112-119. Yang Y, Shen L, Xie D, et al. Estimation of pollution loads from agricultural nonpoint sources in Three Gorges Reservoir Area (Chongqing) based on the export coefficient modeling approach[J]. Jouranl of Southwest University (Natural Science Edition), 2015,37(3):112-119.
|
[3] |
倪九派,邵景安,谢德体著.三峡库区农村面源污染解析[M]. 北京:科学出版社, 2017. Ni J, Shao J, Xie D. Analysis of rural non-point source pollution in the Three Gorges Reservoir Area[M]. Beijing:Science Press, 2017.
|
[4] |
Baulch, Helen M. Asking the Right Questions about Nutrient Control in Aquatic Ecosystems[J]. Environmental Science & Technology, 2013, 47(3):1188-1189.
|
[5] |
Howarth R, Billen G, Swaney D. Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean:natural and human influences[J]. Oceanographic Literature Review, 1997,5(44):448.
|
[6] |
Schaefer S, Alber M. Temporal and spatial trends in nitrogen and phosphorus inputs to the watershed of the Altamaha River, Georgia, USA[J]. Biogeochemistry, 2007,86(3):231-249.
|
[7] |
Schaefer S, Hollibaugh J, Alber M. Watershed nitrogen input and riverine export on the west coast of the US[J]. Biogeochemistry, 2009,93(3):219-233.
|
[8] |
Hong B, Swaney D, Howarth R. A toolbox for calculating net anthropogenic nitrogen inputs (NANI)[J]. Environmental Modelling & Software, 2011,26(5):623-633.
|
[9] |
Hagg H. Nitrogen land-sea fluxes in the Baltic Sea catchment:empirical relationships and budgets[M]. Department of applied environmental science, Stockholm university, 2010.
|
[10] |
Billen G, Silvestre M, Grizzetti B, et al. Nitrogen flows from European watersheds to coastal marine waters[J]. Cambridge University Press, 2011:271-297.
|
[11] |
Leip A, Achermann B, Billen G, et al. Integrating nitrogen fluxes at the European scale[J]. European Nitrogen Assessment, 2011:345-376.
|
[12] |
Kopa?cek J, Hejzlar J, Posch M. Factors controlling the export of nitrogen from agricultural land in a large central European catchment during 1900~2010[J]. Environmental science & technology, 2013, 47(12):6400-6407.
|
[13] |
韩玉国,李叙勇,南哲,等.北京地区2003~2007年人类活动氮累积状况研究[J]. 环境科学, 2011,32(6):1537-1545. Han Y, Li X, Nan Z, et al. Net anthropogenic nitrogen accumulation in the Beijing metropolitan region in 2003 to 2007[J]. Environment Science, 2011,32(6):1537-1545.
|
[14] |
Huang H, Chen D, Zhang B, et al. Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs, hydroclimate, and land-use change[J]. Journal of Hydrology, 2014,517(5):95-104.
|
[15] |
Gao W, Howarth R W, Swaney D P, et al. Enhanced N input to Lake Dianchi Basin from 1980 to 2010:Drivers and consequences[J]. Science of the Total Environment, 2015,505:376-384.
|
[16] |
Chen F, Hou L, Liu M, et al. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export[J]. Journal of Geophysical Research:Biogeosciences, 2016, 121(2):451-465.
|
[17] |
李影,刘宏斌,雷秋良,等.洱海流域乡镇尺度上人类活动对净氮输入量的影响[J]. 环境科学, 2018,39(9):4189-4198. Li Y, Liu H, Lei Q, et al. Impact of human activities on net anthropogenic nitrogen inputs (NANI) at township scale in Erhai lake basin[J]. Environment Science, 2018,39(9):4189-4198.
|
[18] |
郭虎林,韩玉国,郭子繁.北京地区典型果园NANI解析与消减对策[J]. 应用与环境生物学报, 2020,26(2):1-12. Guo H, Han Y, Guo Z. Analysis and reduction of NANI in typical orchard in Beijing area[J]. Chinese Journal of Applied & Environmental Biology, 2020,26(2):1-12.
|
[19] |
刘方谊,范先鹏,夏颖,等.三峡库区典型流域农业面源氮素输出特征[J]. 湖北农业科学, 2018,57(10):31-36. Liu F, Fan X, Xia Y, et al. Characteristics of nitrogen output from agricultural non-point source in typical watershed of Three Gorges Reservoir Area[J]. Hubei Agricultural Sciences, 2018,57(10):31-36.
|
[20] |
姜世伟.三峡库区典型小流域面源污染特征研究[D]. 重庆:重庆师范大学, 2017. Jiang S W. Study on characteristics of non-point source pollution in a typical small watershed of Three Gorges Reservoir Area[D]. Chongqing:Chongqing Normal University, 2017.
|
[21] |
高伟,高波,严长安,等.鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J]. 环境科学学报, 2016,36(9):3137-3145. Gao W, Gao B, Yan C, et al. Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its' effect on water quality of lake[J]. Acta Sci Circum, 2016,36(9):3137-3145.
|
[22] |
国家统计局.国家数据[Z]. http://data.stats.gov.cn/. National Bureau of Statistics. National data[Z]. http://data.stats.gov.cn/.
|
[23] |
重庆统计信息网.重庆统计年鉴[EB/OL]. http://tjj.cq.gov.cn/tjsj/shuju/tjnj/. Chongqing Statistical Information Network. Chongqing Statistical Yearbook. http://tjj.cq.gov.cn/tjsj/shuju/tjnj/.
|
[24] |
重庆市生态环境监测中心[Z]. http://sthjj.cq.gov.cn/. Chongqing Ecological Environment Monitoring Center[Z]. http://sthjj.cq.gov.cn/.
|
[25] |
中华人民共和国环境保护部.长江三峡工程生态与环境监测公报[EB/OL]. http://jcs.mep.gov.cn/hjzl/sxgb/. Ministry of Environmental Protection of the People's Republic of China. Bulletin on Ecological and Environmental Monitoring of the Three Gorges Project[EB/OL]. http://jcs.mep.gov.cn/hjzl/sxgb/.
|
[26] |
资源环境数据云平台[Z]. http://www.resdc.cn/Default.aspx. Resource Environment Data Cloud Platform[Z]. http://www.resdc.cn/Default.aspx.
|
[27] |
Jordan T, Weller D. Human contributions to terrestrial nitrogen flux[J]. BioScience, 1996,46(9):655-664.
|
[28] |
张汪寿,李叙勇,杜新忠,等.流域人类活动净氮输入量的估算,不确定性及影响因素[J]. 生态学报, 2014,34(24):7454-7464. Zhang W, Li X, Du X, et al. Accounting methods, uncertainties and influential factors of net anthropogenic nitrogen input (NANI)[J]. Acta Ecologica Sinca, 2014,34(24):7454-7464.
|
[29] |
遆超普.不同空间尺度区域氮素收支[D]. 南京:南京农业大学, 2011. Ti C P. Regional nitrogen budget at different spatial scales[D]. Nanjing:Nanjing Agricultural University, China, 2011.
|
[30] |
张柏发,陈丁江.1980~2010年浙江某典型河流硝态氮通量对净人类活动氮输入的动态响应[J]. 环境科学, 2014,35(8):2911-2919. Zhang B, Chen D. Dynamic response of riverine nitrate flux to net anthropogenic nitrogen inputs in a typical river in Zhejiang province over the 1980~2010 period[J]. Environmental Science, 2014,35(8):2911-2919.
|
[31] |
Han Y, Fan Y, Yang P, et al. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China[J]. Geofisica Internacional, 2014,213(1):87-94.
|
[32] |
Kimura S D, Hatano R, Hayakawa A, et al. Influence of agricultural activity on nitrogen budget in Chinese and Japanese watersheds[J]. Pedosphere, 2012,22(2):137-151.
|
[33] |
第一次全国污染源普查资料纂委员会.污染源普查产排污系数手册(上)[M]. 北京:中国环境科学出版社, 2011:6-30. The First National Committee for the Survey of Pollution Sources. The Handbook of Pollution Coefficients from the General Survey of Pollution Sources (I)[M]. Beijing:China Environmental Press, 2011:6-30.
|
[34] |
中华人民共和国卫生部.中国居民营养与健康现状[J]. 中国心血管病研究杂志, 2004,2(12):919-922. Ministry of Health of the People's Republic of China. Nutrition and Health Status of Chinese Residents[J]. Chinese Journal of Cardiovascular Research, 2004,2(12):919-922.
|
[35] |
武淑霞.我国农村畜禽养殖业氮磷排放变化特征及其对农业面源污染的影响[D]. 北京:中国农业科学院, 2005. Wu S. The spatial and temporal change of nitrogen and phosphorus produced by livestock and poultry & their effects on agricultural non-point pollution in China[D]. Beijing:Chinese Academy of Agricultural Sciences, 2005.
|
[36] |
Van H. Factors affecting manure quantity, quality, and use[C]. Proceedings of the mid-south ruminant nutrition conference, Dallas-Ft. 1998:9-20.
|
[37] |
Han Y, Yu X, Wang X, et al. Net anthropogenic phosphorus inputs (NAPI) index application in Mainland China[J]. Chemosphere, 2013, 90(2):329-337.
|
[38] |
张汪寿,苏静君,杜新忠,等.1990~2010年淮河流域人类活动净氮输入[J]. 应用生态学报, 2015,26(6):1831-1839. Zhang W, Su J, Du X, et al. Net anthropogenic nitrogen input to Huaihe River Basin, China during 1990~2010[J]. Chinese Journal of Applied Ecology, 2015,26(6):1831-1839.
|
[39] |
杨月欣,王光亚.中国食物成分表[M]. 北京:北京大学医学出版社, 2009. Yang Y, Wang G. China food ingredients table[M]. Beijing:Peking University Medical Press, 2009.
|
[40] |
Borbor-Cordova M, Boyer E, Mcdowell W, et al. Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use:Guayas, Ecuador[J]. Biogeochemistry (Dordrecht), 2006, 79(1/2):135-161.
|
[41] |
Burns R C, Hardy R W F. Nitrogen fixation in bacteria and higher plants[M]. Springer Science & Business Media, 2012.
|
[42] |
Howarth R W, Swaney D P, Boyer E W, et al. The influence of climate on average nitrogen export from large watersheds in the Northeastern United States[J]. Biogeochemistry (Dordrecht), 2006,79(1/2):163-186.
|
[43] |
Fangmeier A, Hadwiger-Fangmeier A, Eerden L, et al. Effects of atmospheric ammonia on vegetation-A review[J]. Environmental Pollution, 1994,86(1):43-82.
|
[44] |
Prospero J, Barrett K, Church T. Atmospheric deposition of nutrients to the North Atlantic Basin[J]. Oceanographic Literature Review, 1997,5(44):435.
|
[45] |
Rock L, Mayer B. Nitrogen budget for the Oldman River Basin, southern Alberta, Canada[J]. Nutrient Cycling in Agroecosystems, 2006,75(1-3):147-162.
|
[46] |
顾峰雪,黄玫,张远东,等.1961~2010年中国区域氮沉降时空格局模拟研究[J]. 生态学报, 2016,36(12):3591-3600. Gu X, Huang M, Zhang Y, et al. Modeling the temporal-spatial patterns of atmospheric nitrogen deposition in China during 1961~2010[J]. Acta Ecologica Sinica, 2016,36(12):3591-3600.
|
[47] |
孙素琪,王云琦,王玉杰,等.缙云山大气氮湿沉降组成及其变化特征[J]. 北京林业大学学报, 2013,35(4):47-54. Sun S, Wang Y, Wang Y, et al. Composition and temporal variation of atmospheric nitrogen wet deposition in Jinyun Mountain,southwestern China[J]. Journal of Beijing Forestry University, 2013,35(4):47-54.
|
[48] |
王玉荧,张六一,杨复沫,等.三峡库区腹地秋末冬初大气干湿沉降化学组成特征[J]. 环境科学导刊, 2018,37(4):34-39. Wang Y, Zhang L, Yang F, et al. Characteristics of chemical composition in wet and dry deposition in late autumn and early winter in the hinterland of the Three Gorges Reservoir Region[J]. Environmental Science Guide, 2018,37(4):34-39.
|
[49] |
Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013,494(7438):459-462.
|
[50] |
高伟,郭怀成,后希康.中国大陆市域人类活动净氮输入量(NANI)评估[J]. 北京大学学报(自然科学版), 2014,50(5):951-959. Gao W, Guo H, Hou X. Evaluating city-scale net anthropogenic nitrogen input (NANI) in mainland China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014,50(5):951-959.
|
[51] |
Xing G, Zhu Z. Regional nitrogen budgets for China and its major watersheds[J]. Biogeochemistry, 2002,57-58(1):405-427.
|
[52] |
Galloway J, Dentener F, Capone D, et al. Nitrogen cycles:past, present, and future[J]. Biogeochemistry, 2004,70(2):153-226.
|
[53] |
Hayakawa A, Woli K, Shimizu M, et al. Nitrogen budget and relationships with riverine nitrogen exports of a dairy cattle farming catchment in eastern Hokkaido, Japan[J]. Soil Science & Plant Nutrition, 2009,55(6):800-819.
|
[54] |
Shen Z, Qiu J, Hong Q, et al. Simulation of spatial and temporal distributions of non-point source pollution load in the Three Gorges Reservoir Region[J]. Science of The Total Environment, 2014,493:138-146.
|
[55] |
谭少军,邵景安,邓华,等.三峡库区土地利用驱动力评价及机制分析[J]. 中国农业资源与区划, 2017,38(11):122-129. Tang S, Shao J, Deng H, et al. Assessment of land use driving force and mechanism in Three Gorges Reservoir Area[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017,38(11):122-129.
|
[56] |
韩震,罗燏辀,王中根,等.土地利用方式对流域氮输入输出关系的影响——以加州San Joaquin流域为例[J]. 地理科学进展, 2010,29(9):1081-1086. Han Z, Luo Y, Wang Z, et al. Impact of land use on input and export of nitrogen of watersheds:A case study in San Joaquin Valley, CA[J]. Rogress in Geography, 2010,29(9):1081-1086.
|
|
|
|