|
|
Resistivity monitoring of oil migration in heterogeneous water-bearing soil |
PAN Yu-ying1, TONG Yi-han1, ZHU Gen-min2, XU Fei-yin2,3, YANG Jin-sheng4, YU Ye-wei1, ZHANG Qian1, ZHANG Meng1, TIAN Li-na1 |
1. College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China;
2. United National-Local Engineering Laboratory of Harbor Oil&Gas Storage and Transportation Technology, Zhoushan 316022, China;
3. Zhejiang Hongyu Geotechnical Investigation&Building Design CO., LTD, Zhoushan 316022, China;
4. Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China |
|
|
Abstract The heterogeneous soil layer was established by self-made three-dimensional plexiglass tank, and two leakage points in shallow and interior soil layer were set up to simulate the mobile phase crude oil migration and redistribution process under the condition of water level fluctuation in water-bearing soil layer. The corresponding resistivity response characteristics were revealed using self-made high density electrode arrays and electrometer. The results showed that the migration of crude oil in soil was affected by the leakage source location, the leakage volume and the soil layer structure. The transverse diffusion of the leakage point in the same soil layer was more obvious in the vertical direction, and oil around the shallow leakage point diffused around. The larger the leakage volume, the wider the pollution range. The higher the permeability of the soil layer, the deeper the pollution depth. There were two kinds of anomalies in high resistance and low resistance after crude oil leakage. When the soil layer structure was simple and the oil content was high, the high resistance anomaly was obvious. When the composition of soil layer was complex, especially the salt and clay mineral contents were high, or the water and oil contents were low, the low resistance anomaly was easy to occur. After the water level rose, the overall soil resistivity decreased and the crude oil was concentrated to the center of the polluted area. After the water level dropped, the resistivity increased, the crude oil dispersed around. From the above, the water level fluctuation caused the oil to diffuse further. Affected by the internal leakage point, the closer near the leakage point (0.08m), the more serious the pollution at the depth. In addition, the oil content in the lower part of the leakage point(0.15m) was higher than that in the upper part (0.04m), indicating that the downward migration of oil was more obvious than the upper one around the internal leakage point.
|
Received: 22 July 2019
|
|
|
|
|
[1] |
张京磊,慈华聪,何兴东,等.盐渍化胁迫下油葵对土壤原油污染的适应性及其改良措施[J]. 应用生态学报, 2015,26(11):3503-3508. Zhang J L, Ci H C, He X D, et al. Adaptability of Helianthus annuus seedlings to crude oil pollution in soil and its improvement measures under salinization stress[J]. Chinese Journal of Applied Ecology, 2015, 26(11):3503-3508.
|
[2] |
王振霞.原油在土壤中的迁移及释放模拟研究[D]. 青岛:青岛理工大学, 2010:5-7. Wang Z X. Simulation study on transport and release of crude oil in soil[D]. Qingdao:Qingdao University of Technology, 2010.
|
[3] |
王龙辉.关于地球物理勘查技术重要应用分析[J]. 世界有色金属, 2019,(1):233-234. Wang L H. Analysis of important application of geophysical exploration technology[J]. World Nonferrous Metals, 2019,(1):233-234.
|
[4] |
王春辉.探地雷达方法测量近地表含水量及污染物探测研究[D]. 长春:吉林大学, 2007. Wang C H. Research on ground penetrating radar method for measuring surface water content and detecting pollutants[D]. Changchun:Jilin University, 2007.
|
[5] |
刘澜波,钱荣毅.探地雷达:浅表地球物理科学技术中的重要工具[J]. 地球物理学报, 2015,58(8):2606-2617. Liu L B, Qian R Y.[J]. Ground penetrating radar:A critical tool in near-surface geophysics[J]. Chinese Journal of Geophysics, 2015, 58(8):2606-2617.
|
[6] |
詹良通,穆青翼,陈云敏,等.利用时域反射法探测砂土中LNAPLs的适用性室内试验研究[J]. 中国科学:技术科学, 2013,43(8):885-894. Zhan L T, Mu Q Y, Chen Y M, et al. Experimental study on applicability of using time-domain reflectometry to detect NAPLs contaminated sands[J]. Science China:Technology Science, 2013, 43(8):885-894.
|
[7] |
陈福新.利用时域反射技术测定饱和土壤中轻非水相液体的含量[D]. 太原:太原科技大学, 2015. Chen F X. Determination of the content of light non-aqueous liquids in saturated soils using time-domain reflection technology[D]. Taiyuan:Taiyuan University of Science and Technology, 2015.
|
[8] |
潘玉英,贾永刚,郭磊,等.LNAPL在砂质含水层中动态迁移的电阻率法监测试验研究[J]. 环境科学, 2012,33(5):1744-1752. Pan Y Y, Jia Y G, Guo L, et al. LNAPL migration monitoring in simulated sand aquifer using resistivity method[J]. Environmental Science, 2012,33(5):1744-1752.
|
[9] |
潘玉英,贾永刚,许中硕,等.不同影响因素下石油污染土电阻率特征研究[J]. 环境科学学报, 2015,35(3):880-889. Pan Y Y, Jia Y G, Xu Z S, et al. The study on resistivity characteristics of oil contaminated soil in different influencing factors[J]. Acta Scientiae Circumstantiae, 2015,35(3):880-889.
|
[10] |
王泽亚,徐亚,董路,等.金属离子污染砂土复电阻率的时变特征及形成机制[J]. 中国环境科学, 2019,39(3):1147-1153. Wang Z Y, Xu Y, Dong L, et al. Complex resistivity of cationic metal contaminated sandy soils:Time-varying characteristics and formation mechanism[J]. China Environmental Science, 2019,39(3):1147-1153.
|
[11] |
Nambi I M, Rajasekhar B, Loganathan V, et al. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill[J]. Environmental Monitoring and Assessment, 2017,189(4):148.
|
[12] |
刘汉乐,周启友,吴华桥.基于高密度电阻率成像法的轻非水相液体饱和度的确定[J]. 水利学报, 2008,39(2):189-195. Liu H L, Zhou Q Y, Wu H Q. Determination of saturation distribution of light non-aqueous phase liquid based on electric resistivity tomography[J]. Journal of Hydraulic Engineering, 2008,(2):189-195.
|
[13] |
胡黎明,邢巍巍,吴照群.多孔介质中非水相流体运移的数值模拟[J]. 岩土力学, 2007,(5):951-955. Hu L M, Xing W W, Wu Z Q. Numerical simulation of non-aqueous phase liquids migration in porous media[J]. Rock and Soil Mechanics, 2007,(5):951-955.
|
[14] |
Verstraete W R. Modeling of the breakdown and the mobilization of hydrocarbons in unsaturated soil layers[J]. Proceedings, 1976:99-112.
|
[15] |
Cooke A B. Centrifuge modeling of flow and contaminant transport through partially saturated soils[D]. Kingston:Queen's University, 1991.
|
[16] |
邢巍巍.LNAPLs在土体中的运移特性研究[D]. 北京:清华大学, 2005. Xing W W. Study on the Migration Behavior of LNAPLs in Soils[D]. Beijing:Tsinghua University, 2005.
|
[17] |
Kirchner J W, Feng X H, Neal C. Fractal stream chemistry and its implications for contaminant transport in catchments[J]. Nature, 2000,403(6769):524-527.
|
[18] |
Baedecker M J, Eganhouse R P, Bekins B A, et al. Loss of volatile hydrocarbons from an LNAPL oil source[J]. Journal of Contaminant Hydrology, 2011;126(3/4):140-152.
|
[19] |
Wang W, Kuo T, Chen Y, et al. Effect of precipitation on LNAPL recovery performance:An integration of laboratory and field results[J]. Journal of Petroleum Science and Engineering, 2014,116:1-7.
|
[20] |
Varouchakis E A, Spanoudaki K, Hristopulos D T, et al. Stochastic modeling of aquifer level temporal fluctuations based on the conceptual basis of the soil-water balance equation[J]. Soil Science, 2016,181(6):224-231.
|
[21] |
Kechavarzi C, Soga K, Illangasekare T H. Two-dimensional laboratory simulation of LNAPL infiltration and redistribution in the vadose zone[J]. Journal of Contaminant Hydrology, 2005,76(3/4):211-233.
|
[22] |
杨明星.石油有机污染组分在水位波动带中的分异演化机理研究[D]. 长春:吉林大学, 2014. Yang M X. Fate and Transport of Petroleum Organic Compounds in Water Table Fluctuation Zone[D]. Changchun:Jilin University, 2014.
|
[23] |
林广宇.地下水位变动带石油烃污染物的迁移转化规律研究[D]. 长春:吉林大学, 2014. Lin G Y. Study on Migration and Transformation of petroleum hydrocarbons in Zone of Intermittent Saturation[D]. Changchun:Jilin University, 2014.
|
[24] |
刘月峤,丁爱中,刘宝蕴,等.地下水位波动带中石油烃污染迁移转化规律综述[J]. 科学技术与工程, 2018,18(24):172-178. Liu Y Q, Ding A Z, Liu B Y, et al. A Review of the petroleum hydrocarbon contamination transformation performance in the zone of intermittent saturation[J]. Science Technology and Engineering, 2018, 18(24):172-178.
|
[25] |
杨明星,杨悦锁,杜新强,等.石油污染地下水有机污染组分特征及其环境指示效应[J]. 中国环境科学, 2013,33(6):1025-1032. Yang M X, Yang Y S, Du X Q, et al. Organic fractions and their environmental implications of petroleum contaminated groundwater[J]. China Environmental Science, 2013,33(6):1025-1032.
|
[26] |
赵传军,王瑜,李娟,等.水位波动对双岩性土层中苯系物运移规律的影响[J]. 环境工程, 2017,35(12):15-19+56. Zhao C J, Wang Y, Li J, et al. The influence of water level fluctuation on the migration of BTEX in the double lithological soil[J]. Environmental Engineering, 2017,35(12):15-19+56.
|
[27] |
杨楠柠,潘玉英,童森炜,等.地下水位波动及降水对原油在非均质土层中重分布的影响[J]. 环境科学研究, 2019,32(3):475-484. Yang N N, Pan Y Y, Tong S W, et al. The influence of water table fluctuation and rainfall on redistribution of crude oil in heterogeneous soil[J]. Research of Environmental Sciences, 2019,32(3):475-484.
|
[28] |
李盼盼,杨悦锁,路莹,等.水位波动对土壤苯系物的污染运移和水化学影响[J]. 环境化学, 2017,36(8):1842-1848. Li P P, Yang Y S, Lu Y, et al. Impact of water level fluctuation on BTEX migration and hydrochemistry in soils[J]. Environmental Chemistry, 2017,36(8):1842-1848.
|
[29] |
杨洋.考虑地下水位波动的土层污染物运移模型研究[D]. 石家庄:河北农业大学, 2015. Yang Y. Research on the model of contaminant migration in soil considering groundwater level fluctuation[D]. Shijiazhuang:Hebei Agriculture University, 2015.
|
[30] |
邢天放.分层土壤接地测试与计算方法研究[D]. 成都:成都信息工程学院, 2013. Xing T F. The research of grounding test and computing method for layered soil[D]. Chengdu:Chengdu University of Information Technology, 2013.
|
[31] |
童森炜,潘玉英,杨楠柠,等.特殊地质条件下流动相原油在沿海土-水系统中的运移过程及机制研究[J]. 环境科学学报, 2019,39(2):469-479. Tong S W, Pan Y Y, Yang N Y, et al. Study on movement and mechanism of mobile phase crude oil in coastal soil-water system under special geological conditions[J]. Acta Scientiae Circumstantiae, 2019,39(2):469-479.
|
[32] |
GB/T 12763.8-2007海洋调查规范第8部分:海洋地质地球物理调查[S]. GB/T 12763.8-2007 Specification for marine surveys. Part 8:Marine geogeological surveys[S].
|
[33] |
GB 17378.5-2007海洋监测规范第5部分:沉积物分析[S]. GB 17378.5-2007 Specification for marine monitoring Part 5:Sediment analysis[S].
|
[34] |
潘玉英.NAPLs地下运移控制因素及监测技术研究[D]. 青岛:中国海洋大学, 2013. Pan Y Y. Study on control I ing factors and monitoring technology of NAPLs underground migration[D]. Qingdao:Ocean University of China, 2013.
|
[35] |
马晓丽.低阻油层成因分析及识别方法[J]. 云南化工, 2018,45(9):185-186. Ma X L.Genetic analysis and identification methods of low-resistivity oil layer[J]. Yunnan Chemical Technology, 2018,45(9):185-186.
|
[36] |
徐锦绣,吕洪志,刘欢,等.渤海LD油田低阻油层成因机理与评价方法[J]. 中国海上油气, 2018,30(3):47-55. Xu J X, Lv H Z, Liu H, et al. Genesis mechanism and evaluation methods for low-resistivity oil layers in the Bohai LD oilfield[J]. China Offshore Oil and Gas, 2018,30(3):47-55.
|
[37] |
伊国杰,潘玉英,陈琳,等.舟山海洋沉积物及沿海沉积物流动相石油污染的电阻率特性及其影响因素研究[J]. 海洋与湖沼, 2017, 48(4):857-863. Yi G J, Pan Y Y, Chen L, et al. The study on resistivity characteristics andinfluencing factors of mobile phase oil contaminated marine and coastal sediments in Zhoushan[J]. Oceanologia et Limnologia Sinica, 2017,48(4):857-863.
|
|
|
|