|
|
Fe2+ oxidation and mineralization properties of Acidithiobacillus ferrooxidans immobilized on three secondary iron minerals |
SONG Yong-wei, WANG Rui, YANG Lin-lin, WANG He-ru, YANG Jun, CAO Yan-xiao |
Department of Environmental Science and Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China |
|
|
Abstract Biomineralization mediated by A.ferrooxidans to promotes the transformation of soluble Fe into secondary iron minerals is of great significance to the treatment of acid mine drainage (AMD). As a chemoautotrophic bacteria, A.ferrooxidans are vulnerable to hydraulic shock and loss. To ensure a higher Fe2+ oxidation and mineralization rate, immobilization method is often used to increase the bacterial density. In the study, schwertmannite, K-jarosite and NH4-jarosite immobilized with A.ferrooxidans were synthesized under the same initial conditions (pH=2.30, Fe2+ concentration 4.48g/L, and A.ferrooxidans density 8×106cells/mL). The he Fe2+ oxidation properties of A.ferrooxidans before (fixed state) and after (free state) minerals dissolution and the A.ferrooxidans fixing ability on minerals were compared. Results indicated that the dry weight of biosynthesis minerals was schwertmannite (0.24g) < NH4-jarosite (0.35g) < K-jarosite (0.67g), however, A.ferrooxidans fixing ability was in the order of schwertmannite > NH4-jarosite > K-jarosite. According to the Fe2+ oxidation rate of free A.ferrooxidans, calculated the effective biomass of A.ferrooxidans immobilized by schwertmannite, NH4-jarosite and K-jarosite was 5.33×107~5.33×108, 5.72×106~5.72×107, and 6.35×106cells/g (dry basis), respectively. The effective biomass of secondary iron minerals not only directly affects the oxidation rate of Fe2+, but also indirectly determines the mineralization removal effect of total Fe in AMD system.
|
Received: 30 September 2019
|
|
|
|
|
[1] |
Singer P C, Stumm W. Acidic mine drainage:the rate-determining step[J]. Science, 1970,167(3921):1121-1123.
|
[2] |
Vhahangwele M. A novel technology for neutralizing acidity and attenuating toxic chemical species from acid mine drainage using cryptocrystalline magnesite tailings[J]. Journal of Water Process Engineering, 2016,10(6):67-77.
|
[3] |
Wu Z L, Zou L C, Chen J H, et al. Column bioleaching characteristic of copper and iron from Zijinshan sulfide ores by acid mine drainage[J]. International Journal of Mineral Processing, 2016,149:18-24.
|
[4] |
Song Y W, Wang M, Liang J R, et al. High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation[J]. Hydrometallurgy, 2014,143(3):23-27.
|
[5] |
Lee W C, Lee S W, Yun S T, et al. A novel method of utilizing permeable reactive kiddle (PRK) for the remediation of acid mine drainage[J]. Journal of Hazardous Materials, 2016,301:332-341.
|
[6] |
Meschke K, Herdegen V, Aubel T, et al. Treatment of opencast lignite mining induced acid mine drainage (AMD) using a rotating microfiltration system[J]. Journal of Environmental Chemical Engineering, 2015,4(4):2848-2856.
|
[7] |
Zhang S L, Jia S Y, Yu B, et al. Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization[J]. Chemical Geology, 2016,420(20):270-279.
|
[8] |
Gan M, Sun S G, Zheng Z H, et al. Adsorption of Cr(VI) and Cu(II) by AlPO4modified biosynthetic schwertmannite[J]. Applied Surface Science, 2015,356(30):986-997.
|
[9] |
Mihone K M, Hana F, Sanda R, et al. Assessment of metal risks from different depths of jarosite tailing waste of Trepça Zinc Industry, Kosovo based on BCR procedure[J]. Journal of Geochemical Exploration, 2015,148:161-168.
|
[10] |
廖岳华.施氏矿物的生物合成及去除水中砷的效果与机理研究[D]. 南京:南京农业大学, 2008. Liao Y H. Biosynthesis of schwertmannite and its efficiency and mechanism of arsenite removal from aqueous solutions[D]. Nanjing:Nanjing Agricultural University, 2008.
|
[11] |
陈福星,周立祥.生物催化合成的施氏矿物对废水中Cr(VI)的吸附[J]. 中国环境科学, 2006,26(1):11-15. Chen F X, Zhou L X. Adsorption of Cr(VI) in wastewater by catalytic biosynthesis Schwertmannite[J]. China Environmental Science, 2006, 26(1):11-15.
|
[12] |
王长秋,马生凤,鲁安怀.黄钾铁矾类矿物沉淀去除Cr(VI)的初步研究[J]. 矿物岩石地球化学通报, 2006,25(4):335-338. Wang C Q, Ma S F, Lu A H. A preliminary study on the Cr(VI) removing from wastewater by precipitation of jarosite group minerals[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2006,25(4):335-338.
|
[13] |
Asta M P, Cama J, Martínez M, et al. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications[J]. Journal of Hazardous Materials, 2009,171(1-3):965-972.
|
[14] |
苏贵珍,陆建军,陆现彩,等,施氏矿物吸附Cu2+及氧化亚铁硫杆菌的实验研究[J]. 岩石矿物学杂志, 2009,28(6):575-580. Su G Z, Lu J J, Lu X C, et al. An experimental study of the adsorption of Cu2+ and Acidothiobacillus ferrooxidans on schwertmannite[J]. Acta Pet rologica et Mineralogica, 2009,28(6):575-580.
|
[15] |
Kinnunen P H M, Puhakka J A. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in a fluidized-bed reactor[J]. Biotechnology and Bioengineering, 2004,85:697-705.
|
[16] |
Pogliani C, Donati E. Immobilisation of Thiobacillus ferrooxidans:importance of jarosite precipitation[J]. Process Biochemistry, 2000, 35:997-1004.
|
[17] |
Karamanev D G. Model of the biofilm structure of Thiobacillus ferrooxidans[J]. Journal of Biotechnology, 1991,20:51-64.
|
[18] |
张莎莎,沈晨,刘兰兰,等.附着微生物黄铁矾回流对不同温度酸性硫酸盐体系亚铁氧化及总铁沉淀的强化效果[J]. 环境科学学报, 2016,36(2):513-520. Zhang S S, Shen C, Liu L L, et al. Effect of reflux of A. ferrooxidans-adsorbed jarosite on Fe2+ oxidation and total Fe precipitation in iron-and sulfate-rich acidic environment under different temperature[J]. Acta Scientiae Circumstantiae, 2016,36(2):513-520.
|
[19] |
Gómez J M, Cantero D, Webb C. Immobilisation of Thiobacillus ferrooxidans cells on nickel alloy fibre for ferrous sulphate oxidation[J]. Applied Microbiology and Biotechnology, 2000,54:335-340.
|
[20] |
Sasaki K, Konno H. Morphology of jarosite-group compounds precipitated from biologically and chemically oxidized Fe ions[J]. The Canadian mineralogist, 2000,38:45-56.
|
[21] |
Jensen A B, Webb C. Ferrous sulphate oxidation using Thiobacillus ferrooxidans:a review[J]. Process Biochemistry, 1995,30:225-236.
|
[22] |
Dutrizac J E. The effect of seeding on the rate of precipitation of ammonium jarosite and sodium jarosite[J]. Hydrometallurgy, 1996, 42:293-312.
|
[23] |
董燕,曹志云,毕文龙,等.富铁酸性硫酸盐体系施氏矿物附着包裹硫杆菌的Fe2+氧化能力研究[J]. 环境科学学报, 2018,38(6):2327-2333. Dong Y, Cao Z Y, Bi W L, et al. Ferrous ions biooxidation ability of schwertmannite-adsorbed Acidithiobacilus ferrooxidans in iron-rich acidic sulfate environment[J]. Acta Scientiae Circumstantiae, 2018, 38(6):2327-2333.
|
[24] |
宋永伟,王鹤茹,曹艳晓,等.NH4+对次生铁矿物形成及重金属去除的影响[J]. 中国环境科学, 2018,38(6):2116-2123. Song Y W, Wang H R, Cao Y X, et al. Effect of NH4+ on the formation of secondary iron minerals and the removal of heavy metals[J]. China Environmental Science, 2018,38(6):2116-2123.
|
[25] |
Song Y W, Wang H R, Yang J, et al. Influence of monovalent cations on the efficiency of ferrous ion oxidation, total iron precipitation, and adsorptive removal of Cr(VI) and As(III) in simulated acid mine drainage with inoculation of Acidithiobacillus ferrooxidans[J]. Metals, 2018,8:0596; doi:10.3390/met8080596.
|
[26] |
Song Y W, Zhang J Y, Wang H R. Initial pH and K+ concentrations jointly determine the types of biogenic ferric hydroxysulfate minerals and their effect on adsorption removal of Cr(VI) in simulated acid mine drainage[J]. Water Science and Technology, 2018,78(10):2183-2192.
|
[27] |
Song Y W, Liu Y L, Wang H R. Comparison of the biological and chemical synthesis of schwertmannite at a consistent Fe2+ oxidation efficiency and the effect of extracellular polymeric substances of Acidithiobacillus ferrooxidans on biomineralization[J]. Materials, 2018,11:1739;doi:10.3390/ma11091739.
|
[28] |
Liao Y, Zhou L, Liang J, et al. Biosynthesis of schwertmannite by Acidithiobacillus ferrooxidans cell suspensions under different pH condition[J]. Materials Science and Engineering C, 2009,29(1):211-215.
|
[29] |
王世梅,周立祥.提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J]. 环境科学学报, 2005,25(10):1418-1420. Wang S M, Zhou L X. A renovated approach for increasing colony count efficiency of Thiobacillus ferrooxidans and Thiobacillus thiooxidans:Double-layer Plates[J]. Acta Scientiae Circumstantiae, 2005,25(10):1418-1420.
|
[30] |
Bai S Y, Xu Z H, Wang M, et al. Both initial concentrations of Fe(II) and monovalent cations jointly determine the formation of biogenic iron hydroxysulfate precipitates in acidic sulfate-rich environments[J]. Materials Sciences and Engineering C, 2012,32(8):2323-2329.
|
[31] |
周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定[J]. 光谱学与光谱分析, 2004,24(9):1140-1143. Zhou S G, Zhou L X, Wong J W C. Biosynthesis and characterization of jarosite[J]. Spectroscopy and Spectral Analysis, 2004,24(9):1140-1143.
|
[32] |
柏双友,梁剑茹,廖岳华,等.嗜酸性氧化亚铁硫杆菌休止细胞保存时间及循环利用对施氏矿物生物合成的影响[J]. 环境科学学报, 2011,31(4):759-764. Bai S Y, Liang J R, Liao Y H, et al. Effects of storage time and recycling of resting Acidithiobacillus ferrooxidans cells on biogenic schwertmannite formation[J]. Acta Scientiae Circumstantiae, 2011, 31(4):759-764.
|
[33] |
Roberts J A, Fowle D A, Hughes B T, et al. Attachment behavior of Shewanella putrefaciens onto magnetite under aerobic and anaerobic conditions[J]. Geomicrobiology Journal, 2006,23:631-640.
|
[34] |
宋永伟,陈婷,王鹤茹,等.阴离子对Acidithiobacillus ferrooxidans氧化活性及次生铁矿物形成影响[J]. 中国环境科学, 2018,38(2):574-580. Song Y W, Chen T, Wang H R, et al. Effect of anions on the oxidation activity of Acidithiobacillus ferrooxidans and the formation of secondary iron minerals[J]. China Environmental Science, 2018, 38(2):574-580.
|
[35] |
Diao Z H, Shi T H, Wang S Z, et al. Silane-based coatings on the pyrite for remediation of acid mine drainage[J]. Water Research, 2013,47(13):4391-4402.
|
[36] |
Valente T, Grande J A, Torre M L, et al. Mineralogy and environmental relevance of AMD-precipitates from the Tharsis mines, Iberian Pyrite Belt (SW, Spain)[J]. Applied Geochemistry, 2013,39(8):11-25.
|
[37] |
Zhu J Y, Gan M, Zhang D, et al. The nature of Schwertmannite and Jarosite mediated by two strains of Acidithiobacillus ferrooxidans with different ferrous oxidation ability[J]. Materials Science and Engineering C, 2013,33(5):2679-2685.
|
[38] |
宋永伟,赵博文,霍敏波,等.温度对嗜酸性硫杆菌活性和生物成因次生铁矿物形成的影响[J]. 环境科学, 2013,34(8):3264-3271. Song Y W, Zhao B W, Huo M B, et al. Effect of temperature on activity of Acidithiobacillus ferrooxidan and formation of biogenic secondary iron minerals[J]. Environmental Science, 2013,34(8):3264-3271.
|
[39] |
JCPDS (Joint Committee on Powder Diffraction Standards). Mineral Powder Diffraction Files[Z]. International Center for Diffraction Data, Swarthmore:Pennsyvania. 2002.
|
[40] |
Lacey D T, Lawson F. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidans[J]. Biotechnology and Bioengineering, 1970,12:29-50.
|
[41] |
李浙英,梁剑茹,柏双友,等.生物成因与化学成因施氏矿物的合成、表征及其对As(III)的吸附[J]. 环境科学学报, 2011,31(3):460-467. Li Z Y, Liang J R, Bai S Y, et al. Characterization and As(III) adsorption properties of schwertmannite synthesized by chemical or biological procedures[J]. Acta Scientiae Circumstantiae, 2011,31(3):460-467.
|
|
|
|