|
|
Effect of inner-pore diameter of bio-carrier on community diversity and stability of microfauna in biofilm |
HU Xiao-bing1,2, WANG Zhen-zhen1, LIN Rui1, SHEN Yi-jun1,2, ZHONG Mei-ying1, LI Jing-jing1, CHEN Hong-wei1, ZHOU Jia-ying1 |
1. College of Architectural Engineering, Anhui University of Technology, Ma'anshan 243002, China; 2. Engineering Research Center of Water Purification and Utilization Technology based on Biofilm Process, Ministry of Education, Ma'anshan 243032, China |
|
|
Abstract In order to provide the basis for the selection of biological carrier with the best pore size in wastewater treatment production, polyurethane sponges with five kinds of inner-pore diameter (0.6~4.0mm) were used as the biological carriers in this study. The effects of the inner-pore diameter on the species diversity and stability of microfauna were systematically investigated. The results showed that flagellates, sarcodina etc., were the dominant species in the intial and middle periods of reactor operation. Whereas, the swimming and sessile ciliates and rotifers mainly occurred in the later stage. Diversity, stability and other parameters of microfauna in different carrier pore sizes exhibited significantly divergence at three distinct periods. The microfauna in the carrier with small pore size (0.6mm) showed high diversity only during the middle period of reactor operation, while the diversity of microfauna in the carriers of 1.0mm diameter was generally lower. However, the diversity of microfauna in the carriers with larger (3.0mm) and big pore size (4.0mm) fluctuated dramatically during the whole process. The stability of microfauna in the carriers with small (0.6mm) and small-moderate pore size (1.0mm) were superior to the carriers with larger pore in the middle and later periods of reactor operation, but worse in the intial periods of reactor operation. Notably, the stability of big pore bio-carrier (4.0mm)was the most undesirable throughout the reactor process. Compared to other size of bio-carriers, the microfauna community in the bio-carrier with moderate pore (2.0mm) possessed higher species richness and uniformity, resulting in a high and stable diversity (H=2.12, R=1.19, λ=0.16 in the later period). In addition, microfauna community on the moderate-pore bio-carrier emerged the strongest stability (WH=0.13 in later period) with an excellent efficiency of wastewater treatment. In the biofilm system, the stability index WH can be used as the index parameter of CODcr removal efficiency.
|
Received: 04 April 2021
|
|
|
|
|
[1] |
Łagód G, Babko R, Jaromin-Gleń K, et al. Biofilm communities in successive stages of municipal wastewater treatment[J]. Environmental Engineering Science, 2016,33(5):306-316.
|
[2] |
Yang D Z, Zhang X F, Zhou Y B, et al. The principle and method of wastewater treatment in biofilm technology[J]. Journal of Computational & Theoretical Nanoence, 2015,12(9):2630-2638.
|
[3] |
Nguyen T T, Ngo H H, Guo W S, et al. Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment[J]. Bioresource Technology, 2010,101(5):1416-1420.
|
[4] |
Sun L, Wang J X, Liang J D, et al. Boric acid cross-linked 3D polyvinyl alcohol gel beads by NaOH-Titration method as a suitable biomass immobilization matrix[J]. Journal of Polymers and the Environment, 2020,28(2):532-541.
|
[5] |
Nelson M J, Nakhla G, Zhu J. Fluidized-bed bioreactor applications for biological wastewater treatment:A Review of Research and Developments[J]. Engineering, 2017,3(3):330-342.
|
[6] |
Seok J. Hybrid adaptive optimal control of anaerobic fluidized bed bioreactor for the de-icing waste treatment[J]. Journal of Biotechnology, 2003,102(2):165-175.
|
[7] |
朱荣芳.不同挂膜空间尺度载体生物膜特性研究[D]. 马鞍山:安徽工业大学, 2017:1-88.Zhu R F. Study on biofilm characteristics of carriers with different space scale for biofilm formation[D]. Ma'anshan:Anhui University of Technology, 2017:1-88.
|
[8] |
Chen X, Kong L, Wang X, et al. Accelerated start-up of moving bed biofilm reactor by using a novel suspended carrier with porous surface[J]. Bioprocess and Biosystems Engineering, 2015,38(2):273-285.
|
[9] |
Madoni P. Protozoa in wastewater treatment processes:A minireview[J]. Italian Journal of Zoology, 2011,78(1):3-11.
|
[10] |
丁国际,张周翀,何韵,等.旋轮虫在污水生物处理中的作用机制初探[J]. 环境科学学报, 2019,39(10):3356-3363.Ding G J, Zhang Z C, He Y, et al. Preliminary study on the function of Philodina sp. in biological wastewater treatment[J]. Acta Scientiae Circumstantiae, 2019,39(10):3356-3363.
|
[11] |
Zhu X F, Yuan W Y, Wang Z W, et al. Effect of worm predation on changes in waste activated sludge properties[J]. Water Environment Research, 2016,88(5):387-393.
|
[12] |
隋海然,李宏君,巢云龙,等.多孔载体中微型动物与原位剩余污泥减量的相关性[J]. 环境工程学报, 2016,10(4):1735-1739.Sui H R, Li H J, Chao Y L, et al. Correlation between microfauna on porous carrier and excess sludge in situ reduction[J]. Chinese Journal of Environmental Engineering, 2016,10(4):1735-1739.
|
[13] |
Liang P, Huang X, Qian Y, et al. Determination and comparison of sludge reduction rates caused by microfaunas' predation[J]. Bioresource Technology, 2006,97(6):854-861.
|
[14] |
Derlon N, Peter-Varbanets M, Scheidegger A, et al. Predation influences the structure of biofilm developed on ultrafiltration membranes[J]. Water Research, 2012,46(10):3323-3333.
|
[15] |
Canals O, Salvado H, Auset M, et al. Microfauna communities as performance indicators for an A/O Shortcut Biological Nitrogen Removal moving-bed biofilm reactor[J]. Water Research, 2013,47(9):3141-3150.
|
[16] |
Papadimitriou C A, Samaras P, Zouboulis A I, et al. Effects of influent composition on activated sludge protozoa[J]. Desalination & Water Treatment Science & Engineering, 2011,33(1-3):132-139.
|
[17] |
Papadimitriou C A, Rouse J D, Karapanagioti H K. Treatment efficiency and biomass characteristics in conventional activated sludge and suspended PVA-Gel biocarrier systems treating phenol-containing wastewater[J]. Global Nest Journal, 2018,20(1):42-48.
|
[18] |
Li Z H. Evaluation of decentralized treatment of sewage employing bio-contact oxidation reactor integrated with filter bed[J]. Process Safety & Environmental Protection, 2013,91(4):295-303.
|
[19] |
贺纪正,李晶,郑袁明.土壤生态系统微生物多样性-稳定性关系的思考[J]. 生物多样性, 2013,21(4):412-421.He J Z, Li J, Zheng Y M. Thoughts on the microbial diversity-stability relationship in soil ecosystems[J]. Biodiversity Science, 2013,21(4):412-421.
|
[20] |
王广春,席劲瑛,胡洪营.不同填料甲苯生物滤塔中微生物群落结构与代谢功能解析[J]. 环境科学学报, 2017,37(10):3936-3942.Wang G C, Xi J Y, Hu H Y. Analysis of microbial community structure and metabolic function in biofilters treating gaseous toluene with different packing media[J]. Acta Scientiae Circumstantiae, 2017,37(10):3936-3942.
|
[21] |
Yang S H, Peng Y Z, Zhang S J, et al. Carrier type induces anammox biofilm structure and the nitrogen removal pathway:Demonstration in a full-scale partial nitritation/anammox process[J]. Bioresource Technology, 2021,334:125249.
|
[22] |
Chu L B, Wang J L, Quan F, et al. Modification of polyurethane foam carriers and application in a moving bed biofilm reactor[J]. Process Biochemistry, 2014,49(11):1979-1982.
|
[23] |
刘娜,姜鸿,谢学辉,等.不同载体对MBBR-CAST工艺中微生物群落结构的影响[J]. 环境科学与技术, 2020,43(5):18-24.Liu N, Jiang H, Xie X H, et al. Effect of different carriers on microbial community structure in MBBR-CAST process[J]. Environmental Science & Technology, 2020,43(5):18-24.
|
[24] |
方芳,龙腾锐,郭劲松,等.多孔填料表面物理特性对生物膜附着的影响[J]. 工业用水与废水, 2004,35(6):1-4.Fang F, Long T R, Guo J S, et al. Effects of surface physical characteristics of protruded packing on biofilm attachment[J]. Industrial Water & Wastewater, 2004,35(6):1-4.
|
[25] |
刘培生.多孔材料孔径及孔径分布的测定方法[J]. 钛工业进展, 2006,23(2):29-34.Liu P S. Determining methods for aperture and aperture distribution of porous materials[J]. Titanium Industry Progress, 2006,23(2):29-34.
|
[26] |
耿佳,冯芳,孔丹,等.聚氨酯生物膜载体处理高氨氮废水的研究[J]. 环境科学与技术, 2013,36(6):124-127.Gen J, Feng F, Kong D, et al. Polyurethane foams biofilm carrier for treatment of wastewater containing strong ammonium[J]. Environmental Science & Technology, 2013,36(6):124-127.
|
[27] |
周芬.混凝土改性亲水性生物填料的开发及其应用研究[D]. 广州:华南理工大学, 2012:45-46.Zhou F. Study on the development and application of concrete modified hydrophilic biological filler[D]. Guangzhou:South China University of Technology, 2012:45-46.
|
[28] |
廖榆敏,汤兵,陈秋雯.移动床生物反应器启动特性研究进展[J]. 水处理技术, 2011,37(2):5-8.Liao Y M, Tang B, Chen Q W. Moving-bed biofilm reactor start-up characteristics[J]. Technology of Water Treatment, 2011,37(2):5-8.
|
[29] |
马放,杨基先,魏利,等.环境微生物图谱[M]. 北京:中国环境科学出版社, 2010:1-345.Ma F, Yang J X, Wei Li, et al. Environmental microbial map[M]. Beijing:China Environmental Science Press, 2010:1-345.
|
[30] |
沈韫芬,顾曼如,龚循矩,等.微型生物监测新技术[M]. 北京:中国建筑工业出版社, 1990:1-524.Shen Y F, Gu M R, Gong X J, et al. New microbiological monitoring technology[M]. Beijing:China Architecture & Building Press, 1990:1-524.
|
[31] |
Madoni P. A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis[J]. Water Research, 1994,28(1):67-75.
|
[32] |
白耀宇,庞帅,韦珊,等.烟草青枯病危害对烟田中小型土壤动物群落的影响[J]. 生态学报, 2018,38(11):3792-3805.Bai Y Y, Pang S, Wei S, et al. Effects of tobacco bacterial wilt on meso-micro soil fauna in tobacco fields of Chongqing[J]. Acta Ecologica Sinica, 2018,38(11):3792-3805.
|
[33] |
蒋杰贤,万年峰,季香云,等.桃园生草对桃树节肢动物群落多样性与稳定性的影响[J]. 应用生态学报, 2011,22(9):2303-2308.Jiang J X, Wang N F, Ji X Y, et al. Diversity and stability of arthropod community in peach orchard under effects of ground cover vegetation[J]. Chinese Journal of Applied Ecology, 2011,22(9):2303-2308.
|
[34] |
国家环境保护总局.水和废水监测分析方法-第4版[M]. 北京:中国环境科学出版社, 2002:1-800.State Environmental Protection Administration. Water and wastewater monitoring and analysis method (fourth edition)[M]. Beijing:China Environmental Science Press, 2002:1-800.
|
[35] |
张立敏,陈斌,李正跃.应用中性理论分析局域群落中的物种多样性及稳定性[J]. 生态学报, 2010,30(6):1556-1563.Zhang L M, Chen B, Li Z Y. Analysis of the species diversity and community stability in local-community using the Neutral Theory[J]. Acta Ecologica Sinica, 2010,30(6):1556-1563.
|
[36] |
Yin J, Zhang P Y, Li F, et al. Simultaneous biological nitrogen and phosphorus removal with a sequencing batch reactor-biofilm system[J]. International Biodeterioration & Biodegradation, 2015,103:221-226.
|
[37] |
周律,李哿,Shin Hangsik,等.污水生物处理中生物膜传质特性的研究进展[J]. 环境科学学报, 2011,31(8):1580-1586.Zhou L, Li G, Shin H, et al. Research progresson mass transfer in biofilms for wastewater treatment[J]. Acta Scientiae Circumstantiae, 2011,31(8):1580-1586.
|
[38] |
Araújo Dos Santos L, Ferreira V, Pereira M O, et al. Relationship between protozoan and metazoan communities and operation and performance parameters in a textile sewage activated sludge system[J]. European Journal of Protistology, 2014,50(4):319-328.
|
[39] |
房平,李雨娥,魏东洋,等.污水处理过程中微生物群落多样性及其对环境因子响应的研究进展[J]. 微生物学通报, 2020,47(9):3004-3020.Fang P, Li Y E, Wei D Y, et al. Microbial community diversity and its response to environmental factors during sewage treatment[J]. Microbiology China, 2020,47(9):3004-3020.
|
[40] |
薛银刚,刘菲,江晓栋,等.太湖不同湖区冬季沉积物细菌群落多样性[J]. 中国环境科学, 2018,38(2):719-728.Xue Y G, Liu F, Jiang X D, et al. The diversity of bacterial communities in the sediment of different lake zones of Lake Taihu in winter[J]. China Environmental Science, 2018,38(2):719-728.
|
[41] |
张晓红,姜博,张文武,等.京津冀区域市政污水厂活性污泥种群结构的多样性及差异[J]. 微生物学通报, 2019,46(8):1896-1906.Zhang X H, Jiang B, Zhang W W, et al. Microbial community diversity of activated sludge from municipal wastewater treatment plants in Beiing-Tianjin-Hebei region[J]. Microbiology China, 2019, 46(8):1896-1906.
|
[42] |
Ouyang F, Ji M, Zhai H Y, et al. Dynamics of the diversity and structure of the overall and nitrifying microbial community in activated sludge along gradient copper exposures[J]. Applied Microbiology and Biotechnology, 2016,100(15):6881-6892.
|
[43] |
Stiborova H, Strejcek M, Musilova L, et al. Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge[J]. Chemosphere, 2020, 238:124629.
|
[44] |
张斌,孙宝盛,季民,等.MBR中微生物群落结构的演变与分析[J]. 环境科学学报, 2008,28(11):2192-2199.Zhang B, Sun B S, Ji M, et al. Analysis and succession of microbial community structure in a membrane bioreactor[J]. Acta Scientiae Circumstantiae, 2008,28(11):2192-2199.
|
[45] |
Dubber D, Gray N F. The influence of fundamental design parameters on ciliates community structure in Irish activated sludge systems[J]. European Journal of Protistology, 2011,47(4):274-286.
|
[46] |
Tilman D, Reich P B, Knops J. Biodiversity and ecosystem stability in a decade-long grassland experiment[J]. Nature, 2006,441(7093):629-632.
|
[47] |
Roscher C, Weigelt A, Proulx R, et al. Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands[J]. Journal of Ecology, 2011,99(6):1460-1469.
|
[48] |
田旺,张化永,王中玉,等.南四湖浮游植物多样性与群落生物量、时间序列稳定性关系[J]. 中国环境科学, 2017,37(1):319-327.Tian W, Zhang H Y, Wang Z Y, et al. Phytoplankton diversity effects on community biomass and temporal stability in Lake Nansihu[J]. China Environmental Science, 2017,37(1):319-327.
|
[49] |
Hector A, Hautier Y, Saner P, et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding[J]. Ecology, 2010,91(8):2213-2220
|
[50] |
Allesina S, Tang S. Stability criteria for complex ecosystems[J]. Nature, 2012,483(7388):205-208.
|
[51] |
Griffiths B S, Hallett P D, Kuan H L, et al. Functional resilience of soil microbial communities depends on both soil structure and microbial community composition[J]. Biology & Fertility of Soils, 2008,44(5):745-754.
|
[52] |
解丰波,李伟光,张多英,等.BEAC工艺中微生物群落变化和种群稳定性[J]. 哈尔滨工业大学学报, 2010,42(12):1874-1878.Xie F B, Li W G, Zhang D Y, et al. Analysis of microbial community dynamics and population stability in BEAC procedure[J]. Journal of Harbin Institute of Technology, 2010,42(12):1874-1878.
|
[53] |
Tian L, Wang L. A meta-analysis of microbial community structures and associated metabolic potential of municipal wastewater treatment plants in global scope[J]. Environmental Pollution, 2020,263:114598.
|
[54] |
Bradley I M, Sevillano-Rivera M C, Pinto A J, et al. Impact of solids residence time on community structure and nutrient dynamics of mixed phototrophic wastewater treatment systems[J]. Water Research, 2019,150:271-282.
|
[55] |
Carrel M, Morales V L, Beltran M A, et al. Biofilms in 3D porous media:Delineating the influence of the pore network geometry, flow and mass transfer on biofilm development[J]. Water Research, 2018, 134:280-291.
|
[56] |
Coyte K Z, Tabuteau H, Gaffney E A, et al. Microbial competition in porous environments can select against rapid biofilm growth[J]. Proceedings of the National Academy of Sciences, 2016,114(2):161-170.
|
[57] |
Nadell C D, Ricaurte D, Yan J, et al. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms[J]. Elife, 2017,6:e21855.
|
[58] |
Chang J F, He X Y, Bai X Q, et al. The impact of hydrodynamic shear force on adhesion morphology and biofilm conformation of Bacillussp.[J]. Ocean Engineering, 2020,197:106860.
|
[59] |
Rochex A, Godon J J, Bernet N, et al. Role of shear stress on composition, diversity and dynamics of biofilm bacterial communities[J]. Water Research, 2008,42(20):4915-4922.
|
[60] |
郝晓地,安兆伟,孙晓明,等.悬浮填料强化污水生物处理的实际作用揭示[J]. 中国给水排水, 2013,29(8):5-9.Hao X D, An Z W, Sun X M, et al. Effect of suspended carriers on enhancing biological wastewater treatment[J]. China Water & Wastewater, 2013,29(8):5-9.
|
[61] |
Zhang X B, Chen X, Zhang C Q, et al. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor[J]. Bioresour Technology, 2016,219:762-767.
|
[62] |
吴春笃,张波,李海燕.生物接触氧化工艺用填料的生物膜特性[J]. 江苏大学学报(自然科学版), 2008,29(1):74-77.Wu C D, Zhang B, Li H Y. Biofilm characteristics in biological contact oxidation packing[J]. Journal of Jiangsu University(Natural Science Edition), 2008,29(1):74-77.
|
|
|
|