|
|
Preparation of g-C3N4 nanosheets doped with proline and its degradation of RhB |
JIANG Jun, NI Qian-qian, KE Xin, YAN Zheng |
College of Energy and Environment, Shenyang Aerospace University, Shenyang 110136, China |
|
|
Abstract Proline doped g-C3N4 nanosheets were successfully prepared by a feasible hydrothermal and calcination approach. Properties of the photocatalysts, including structure, morphology, composition and photoelectric characteristics, were systematically analyzed by FTIR, XRD, SEM, BET, XPS, UV-vis DRS, PL, and Electrochemical workstation. The results showed that the addition of proline could autonomously exfoliate the precursors to make nanosheets of g-C3N4 and increase the specific surface area of the catalysts. Furthermore, the energy band structure of the catalysts, visible light absorption ability, and the separation rate photogenerated carriers of as-prepared g-C3N4 were remarkably improved. The photocatalytic performance was investigated by degradation of Rhodamine B under simulated visible light irradiation. The optimal doping conditions was herein obtained. At 1% addition amount of doped proline (PCN-1%), over 99% pollutants could be degraded under 60min irradiation of visible light. The degradation rate of PCN-1% (0.0271min-1) was 10.04 times compared with that of the traditional bulk carbon nitride (BCN, 0.0027min-1), evidencing the notably improved photocatalysis properties of g-C3N4.
|
Received: 29 December 2021
|
|
|
|
|
[1] |
刘艳青,张立国,刘蕾,等.新型颗粒电极γ-Al2O3@MIL-101(Fe)对水中罗丹明B的电催化氧化[J].环境化学, 2018,37(11):2532-2539. Liu Y Q, Zhang L G, Liu L, et al. Electrocatalytic oxidation of Rhodamine B on a novel particle electrode of γ-Al2O3@MIL-101(Fe)[J]. Environmental Chemistry, 2018,37(11):2532-2539.
|
[2] |
Qiu J, Feng Y, Zhang X, et al. Acid-promoted synthesis of UiO-66for highly selective adsorption of anionic dyes:Adsorption performance and mechanisms[J]. Journal of Colloid and Interface Science, 2017, 499:151-158.
|
[3] |
Zeng G, Huang D, Lai C, et al. Hydroxyl radicals based advanced oxidation processes (AOPs) for remediation of soils contaminated with organic compounds:A review[J]. Chemical Engineering Journal, 2016,284:582-598.
|
[4] |
Gogate P R, Pandit A B. A review of imperative technologies for wastewater treatment I:oxidation technologies at ambient conditions[J]. Advances in Environmental Research, 2004,8(3/4):501-551.
|
[5] |
Ghattas A K, Fischer F, Wick A, et al. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment[J]. Water Research, 2017,116:268-295.
|
[6] |
Xue S, Wu C, Pu S, et al. Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations[J]. Environmental Pollution, 2019,250:338-345.
|
[7] |
Xiao Y, Tian G, Li W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019,141(6):2508-2515.
|
[8] |
Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016,116(12):7159-7329.
|
[9] |
Zhang S, Li J, Wang X, et al. Rationally designed 1D Ag@AgVO3 nanowire/graphene/protonated g-C3N4 nanosheet heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods[J]. Journal of Materials Chemistry A, 2015,3(18):10119-10126.
|
[10] |
Zhang J, Chen X, Takanabe K, et al. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J]. Angewandte Chemie International Edition, 2010,49(2):441-444.
|
[11] |
Xiao P, Jiang D, Liu T, et al. Facile synthesis of carbon-doped g-C3N4 for enhanced photocatalytic hydrogen evolution under visible light[J]. Materials Letters, 2018,212(feb.1):111-113.
|
[12] |
刘帅,李学雷,王烁天,等.碳量子点修饰石墨相氮化碳光催化降解罗丹明B的研究[J].中国环境科学, 2020,40(7):2909-2916. Liu S, Li X L, Wang S T, et al. Photocatalytic degradation of rhodamine B by carbon quantum dot modified graphite phase carbon nitride[J]. China Environmental Science, 2020,40(7):2909-2916.
|
[13] |
Thang N Q, Sabbah A, Chen L C, et al. High-efficient photocatalytic degradation of commercial drugs for pharmaceutical wastewater treatment prospects:A case study of Ag/g-C3N4/ZnO nanocomposite materials[J]. Chemosphere, 2021,282:130971.
|
[14] |
李冬梅,卢文聪,梁奕聪,等.Bi5O7I/g-C3N4Z型异质结的常温沉淀制备及其光催化性能研究[J].中国环境科学, 2021,41(9):4120-4126. Li D M, Lu W C, Liang Y C, et al. Room-temperature precipitation synthesis and photocatalysis of Bi5O7I/g-C3N4Z-scheme heterojunction[J]. China Environmental Science, 2021,41(9):4120-1426.
|
[15] |
张聪,王灿,赵欣,等. Z-scheme V2O5-Ag2O/g-C3N4异质结制备及其可见光催化性能[J].中国环境科学, 2021,41(1):185-191. Zhang, C, Wang C, Zhao X, et al. Fabrication and visible-light photocatalytic performance of Z-scheme V2O5-Ag2O/g-C3N4 heterostructure[J]. China Environmental Science, 2021,41(1):185-191.
|
[16] |
Zhou M, Dong G, Yu F, et al. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method[J]. Applied Catalysis B:Environmental, 2019,256:117825.
|
[17] |
Xiao Y, Tian G, Li W, et al. Molecule self-assembly synthesis of porous few-layer carbon nitride for highly efficient photoredox catalysis[J]. Journal of the American Chemical Society, 2019,141(6):2508-2515.
|
[18] |
Zhao C, Chen Z, Xu J, et al. Probing supramolecular assembly and charge carrier dynamics toward enhanced photocatalytic hydrogen evolution in 2D graphitic carbon nitride nanosheets[J]. Applied Catalysis B:Environmental, 2019,256:117867.
|
[19] |
Zhou Y, Yu Y, Ma D, et al. Atomic Fe dispersed hierarchical mesoporous Fe-N-C nanostructures for an efficient oxygen reduction reaction[J]. ACS Catalysis, 2020,11(1):74-81.
|
[20] |
Liu Q, Wei L, Xi Q, et al. Edge functionalization of terminal amino group in carbon nitride by in-situ C-N coupling for photoreforming of biomass into H2[J]. Chemical Engineering Journal, 2020,383:123792.
|
[21] |
Zhang F, Li J, Wang H, et al. Realizing synergistic effect of electronic modulation and nanostructure engineering over graphitic carbon nitride for highly efficient visible-light H2 production coupled with benzyl alcohol oxidation[J]. Applied Catalysis B:Environmental, 2020,269:118772.
|
[22] |
Yu W W, Zhang T, Zhao Z K. Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highlyefficient visible-light-driven photoredox catalysis[J]. Applied Catalysis B:Environmental, 2020,278:119342.
|
[23] |
Fan X, Zhang L, Cheng R, et al. Construction of graphitic C3N4-based intramolecular donor-acceptor conjugated copolymers for photocatalytic hydrogen evolution[J]. ACS Catalysis, 2015,5(9):5008-5015.
|
[24] |
Lin L, Ren W, Wang C, et al. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production[J]. Applied Catalysis B:Environmental, 2018, 231:234-241.
|
[25] |
Tang D, Chen Y, Yin M, et al. Supramolecular self-assembly production of porous carbon nitride nanosheets with excellent photocatalytic activity by a melamine derivative as doping molecule[J]. Materials Science in Semiconductor Processing, 2020,105:104735.
|
[26] |
Yu W, Zhang T, Zhao Z. Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highly-efficient visible-light-driven photoredox catalysis[J]. Applied Catalysis B:Environmental, 2020,278:119342.
|
[27] |
刘源,赵华,李会鹏,等.硫氯共掺杂g-C3N4纳米片光催化降解染料[J].中国环境科学, 2021,41(10):4662-4669. Liu Y, Zhao H, Li H P, et al. Photocatalytic degradation of dyes by sulfur-and chlorine-co-doped g-C3N4 nanosheets.[J]. China Environmental Science, 2021,41(10):4662-4669.
|
[28] |
Xu M, Han L, Dong S. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity[J]. ACS applied materials&interfaces, 2013,5(23):12533-12540.
|
[29] |
Cui Y, Zhang G, Lin Z, et al. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Applied Catalysis B:Environmental, 2016,181:413-441.
|
[30] |
Liu G H, Liao M L, Zhang Z Z, et al. Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes[J]. Separation and Purification Technology, 2020,244:116618.
|
[31] |
Zhang X, An D, Feng D, et al. In situ surfactant-free synthesis of ultrathin BiOCl/g-C3N4 nanosheets for enhanced visible-light photodegradation of rhodamine B[J]. Applied Surface Science, 2019,476:706-715.
|
[32] |
Wang K, Zhang G, Li J, et al. 0D/2D Z-scheme heterojunctions of bismuth tantalate quantum dots/ultrathin g-C3N4 nanosheets for highly efficient visible light photocatalytic degradation of antibiotics[J]. ACS applied materials&interfaces, 2017,9(50):43704-43715.
|
|
|
|