|
|
Effect of fluid shear stress on activity of Microcystis aeruginosa cells |
LIU Ren-jing1,2,3, JIANG Wen-tao1,2,3, XU Kai-ren1,2,3, LI Zhong-you1,2, LI Xiao1,2, MIN Lei1,2, LIANG Ying1 |
1. College of Architecture and Environment, Sichuan University, Chengdu 610065, China; 2. Key Laboratory for Biomechanical Engineering of Sichuan University, Chengdu 610065, China; 3. Yibin Industrial Technology Research Institute of Sichuan University, Yibin 644000, China |
|
|
Abstract To study the effect of the shear stress on the cell activity of Microcystis aeruginosa, its growth under shear stresses, 0.0, 0.3, 0.6 and 0.9 Pa, was investigated accordingly, and the changes of the algal-cell physiological indicator and the algal-fluid indicator were analyzed. The results indicated that the shear stress below 0.6 Pa can cause the density and photosynthetic pigment content of Microcystis aeruginosa cells increase, promoting their growth and reproduction.The photosynthetic intensity and the nutrient utilization were enhanced by the most favorable shear-stress condition (0.6Pa) for growth, while the cell structure was not excessively damaged. However, the high shear stress, 0.9Pa, would affect the membrane permeability of the algal cells by breaking their structure, thereby inhibiting their growth and metabolism.The results demonstrated that the growth of Microcystis aeruginosa cells was affected by the fluid shear stress, manifested as “low promotion and high inhibition”, where their activity was enhanced by moderate shear stress, and their growth was inhibited by the high shear stress. The findings provided a hint or an approach for preventing and managing Microcystis aeruginosa blooms in water bodies, such as lakes and reservoirs.
|
Received: 18 July 2022
|
|
|
|
|
[1] |
肖永辉,王志刚,刘曙照.水体富营养化及蓝藻水华预警模型研究进展 [J]. 环境科学与技术, 2011,34(11):152-157. Xiao Y H, Wang Z G, Liu S Z. Progress on early warning model of water eutrophication and algal bloom [J]. Environmental Science & Technology, 2011,34(11):152-157.
|
[2] |
生态环境部.2021年中国生态环境状况公报(摘录) [J]. 环境保护, 2022,50(12):61-74. Ministry of Ecological Environment. China ecological environment status bulletin 2021(excerpt) [J]. Environmental Protection, 2022, 50(12):61-74.
|
[3] |
谢 平.微囊藻毒素对人类健康影响相关研究的回顾 [J]. 湖泊科学, 2009,21(5):603-613. Xie P. A review on the studies related to the effects of microcystins on human health [J]. Journal of Lake Sciences, 2009,21(5):603-613.
|
[4] |
秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用 [J]. 科学通报, 2006,51(16):1857-1866. Qin B Q, Yang L Y, Chen F Z, et al. Mechanisms and control technologies of lake eutrophication and its applications [J]. Chinese Science Bulletin, 2006,51(16):1857-1866.
|
[5] |
马健荣,邓建明,秦伯强,等.湖泊蓝藻水华发生机理研究进展 [J]. 生态学报, 2013,33(10):11:3020-3030. Ma J R, Deng J M, Qin B Q, et al. Progress and prospects on cyanobacteria bloom-forming mechanism in lakes [J]. Acta Ecologica Sinica, 2013,33(10):3020-3030.
|
[6] |
李飞鹏,高 雅,张海平,等.流速对浮游藻类生长和种群变化影响的模拟试验 [J]. 湖泊科学, 2015,27(1):44-49. Li F P, Gao Y, Zhang H P, et al. Simulation experiment on the effect of flow velocity on phytoplankton growth and composition [J]. Journal of Lake Sciences, 2015,27(1):44-49.
|
[7] |
秦伯强,王小冬,汤祥明,等.太湖富营养化与蓝藻水华引起的饮用水危机——原因与对策 [J]. 地球科学进展, 2007,22(9):896-906. Qin B Q, Wang X D, Tang X M, et al. Drinking water crisis caused by eutrophication and cyanobacterial bloom in Lake Taihu: Cause and Measurement [J]. Advances in Earth Science, 2007,22(9):896-906.
|
[8] |
Yamamoto T, Hashimoto T, Tarutani K, et al. Effects of winds, tides and river water runoff on the formation and disappearance of the Alexandrium tamarense bloom in Hiroshima Bay, Japan [J]. Harmful Algae, 2002,1(3):301-312.
|
[9] |
Grobbelaar U J. Turbulence in mass algal cultures and the role of light/dark fluctuations [J]. Journal of Applied Phycology, 1994,6(3): 331-335.
|
[10] |
张毅敏,张永春,张龙江,等.湖泊水动力对蓝藻生长的影响 [J]. 中国环境科学, 2007,27(5):707-711. Zhang Y M, Zhang Y C, Zhang L J, et al. The influence of lake hydrodynamics on blue algal growth [J]. China Environmental Science, 2007,27(5):707-711.
|
[11] |
Zhang H, Cui Y, Zhang Y, et al. Experimental study of the quantitative impact of flow turbulence on algal growth [J]. Water, 2021,13(5):659.
|
[12] |
韩丽华,杨桂军,刘玉,等.扰动强度对太湖水华微囊藻群体生长和叶绿素荧光的影响 [J]. 环境科学研究, 2018,31(2):265-272. Han L H, Yang G J, Liu Y, et al. Effect of disturbance intensity on the growth and chlorophyll fluorescence of microcystis flos-aquae colony in Lake Taihu [J]. Research of Environmental Sciences, 2018,31(2): 265-272.
|
[13] |
颜润润,逄 勇,赵 伟,等.环流型水域水动力对藻类生长的影响 [J]. 中国环境科学, 2008,28(9):813-817. Yan R R, Pang Y, Zhao W, et al. Influence of circumfluent type waters hydrodynamic on growth of algae [J]. China Environmental Science, 2008,28(9):813-817.
|
[14] |
Schlichting H, Gersten K. Boundary-layer theory [M]. Berlin, Heidelberg: Springer, 2017.DOI:10.1007/978-3-662-52919-5.
|
[15] |
Hamada T, Yamada Y, Endo S, et al. Research on inactivation of blue-green algae using water hammer pressure [C]//Advances in Water Resources and Hydraulic Engineering. Berlin, Heidelberg: Springer, 2009:417–422.DOI:10.1007/978-3-540-89465-0_73.
|
[16] |
Mitsuhashi S, Hosaka K, Tomonaga E. Effects of shear flow on photosynthesis in a dilute suspension of microalgae [J]. Applied Microbiology and Biotechnology, 1995,42(5):744-749.
|
[17] |
Thomas W H, Gibson C H. Effects of small-scale turbulence on microalgae [J]. Journal of Applied Phycology, 1990,2(1):71-77.
|
[18] |
Hosaka K, Hioki T, Furuune H, et al. Augmentation of microalgae growth due to hydrodynamic activation [J]. Energy Conversion & Management, 1995,36(6-9):725-728.
|
[19] |
N Edwards, S Beeton, A T Bull, et al. A novel device for the assessment of shear effects on suspended microbial cultures [J]. Applied Microbiology and Biotechnology, 1989,30(2):190-195.
|
[20] |
Leupold M, Hindersin S, Gust G, et al. Influence of mixing and shear stress on Chlorella vulgaris, Scenedesmus obliquus, and Chlamydomonas reinhardtii [J]. Journal of Applied Phycology, 2013,25(2):485-495.
|
[21] |
Pasciak W J, Gavis J. Transport limited nutrient uptake rates in Ditylum brightwellii [J]. Limnology and Oceanography, 1975,20(4): 604-617.
|
[22] |
Xiao M, Li M, Reynolds C S. Colony formation in the cyanobacterium Microcystis [J]. Biological Reviews, 2018,93(3):1399-1420.
|
[23] |
张丹,朱晓艳,温小斌,等.微藻培养基平衡pH的研究 [J]. 水生生物学报, 2014,38(3):401-406. Zhang D, Zhu X Y, Wen X B, et al. Studies on equilibrium pH values of micro algal medium [J]. Acta Hydrobiologica Sinica, 2014,38(3): 401-406.
|
[24] |
任 强,蒋文涛,黄学进,等.切应力对铜绿微囊藻活性的影响 [J]. 环境工程, 2017,35(10):35-38. Ren Q, Jiang W T, Huang X J, et al. Effects of shear stress on activation of blue-green algae [J]. Environmental Engineering, 2017, 35(10):35-38.DOI:10.13205/j.hjgc.201710008.
|
[25] |
Sun X X, Choi J K, Kim E K. A preliminary study on the mechanism of harmful algal bloom mitigation by use of sophorolipid treatment [J]. Journal of Experimental Marine Biology and Ecology, 2004,304(1): 35-49.DOI:10.1016/j.jembe.2003.11.020.
|
[26] |
苏 文,孔繁翔,赵旭辉.一种铜绿微囊藻的快速计数方法 [P]. 中国专利, 201310186980.4. Su W, Kong F X, Zhao X H. A rapid method for enumeration of Microcystis aeruginosa [P]. China Patents No.201310186980.4.
|
[27] |
Ji M K, Kabra A N, Choi J, et al. Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris [J]. Ecological Engineering, 2014,73:260-269.
|
[28] |
Xue R, Fu L, Dong S, et al. Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission [J]. Journal of Colloid and Interface Science, 2020, 569:195-203.
|
[29] |
孙晓筠,刘颖,吴庆余.叶绿素缺失和异养生长对蓝藻Synechocystis sp. PCC 6803藻胆蛋白含量的影响 [J]. 植物学报, 1998,15(2):58-62. Sun X Y, Liu Y, Wu Q Y. The effects of deletion of chlorophyll and heterotrophy on phycobiliprotein content of cyanobacterium synecho cystis sp. pcc 6803 [J]. Chinese Bulletin of Botany, 1998,15(2):58-62.
|
[30] |
Arteni A A, Ajlani G, Boekema E J. Structural organisation of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane [J]. Biochimica et Biophysica Acta (BBA) -Bioenergetics, 2009,1787(4):272-279.DOI:10.1016/j.bbabio. 2009.01.009.
|
[31] |
秦天才,阮 捷,王腊娇.镉对植物光合作用的影响 [J]. 环境科学与技术, 2000,000(Z1):33-35,44. Qin T C, Ruan J, Wang L J. Effect of Cd on the plant photosynthesis [J]. Environmental Science and Technology, 2000,000(Z1):33-35,44.
|
[32] |
李小龙,耿亚红,李夜光,等.从光合作用特性看铜绿微囊藻(Microcystis aeruginosa)的竞争优势 [J]. 武汉植物学研究, 2006,24 (3):225-230. Li X L, Geng Y H, Li Y G, et al. The Advantages in competition based on the photosynthetic characteristics of Microcystis aeruginosa [J]. Journal of Wuhan Botanical Research [J]. 2006,24(3):225-230.DOI: 10.3969/j.issn.2095-0837.2006.03.009.
|
[33] |
T Mazzuca Sobczuk, F García Camacho, E Molina Grima, et al. Effects of agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum [J]. Bioprocess and Biosystems Engineering, 2006,28(4):243-250.DOI:10.1007/s00449-005-0030-3.
|
[34] |
Chisti Y. Hydrodynamic damage to animal cells [J]. Critical Reviews in Biotechnology, 2001,21(2):67-110.DOI:10.1080/20013891081692.
|
[35] |
Merchuk J C. Shear effects on suspended cells [M]//Fiechter A, Aiba S, Bungay H R, et al. Bioreactor Systems and Effects. Advances in Biochemical Engineering/Biotechnology, vol 44. Berlin, Heidelberg: Springer, 1991:65-95.DOI:10.1007/Bfb0000748.
|
[36] |
吴轩浩,高佳逸,严杨蔚,等.无机氮和有机氮对铜绿微囊藻生长和产毒影响的比较 [J]. 环境科学学报, 2015,35(3):677-683. Wu X H, Gao J Y, Yan Y W, et al. Comparison of inorganic nitrogen and organic nitrogen on the growth and microcystin production of Microcystis aeruginosa [J]. Acta Scientiae Circumstantiae, 2015,35(3): 677-683.
|
[37] |
李婷,景元书,韩 玮.不同磷条件下高温胁迫对铜绿微囊藻增殖的影响及其恢复 [J]. 环境工程学报, 2015,9(10):4780-4788. Li T, Jing Y S, Han W. Effect of high temperature on cell proliferation and recovery of Microcystis aeruginosa at different initial phosphate concentrations [J]. Chinese Journal of Environmental Engineering, 2015,9(10):4780-4788.
|
[38] |
Contreras A, García F, Molina E, et al. Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of phaeodactylum tricornutum in a concentric tube airlift photobioreactor [J]. Biotechnology and Bioengineering, 1998,60(3):317-325.
|
[39] |
芮 政,杨桂军,刘玉,等.扰动方式对水华微囊藻(Microcystis flos-aquae)群体大小的影响 [J]. 湖泊科学, 2019,31(2):355-364. Rui Z, Yang G J, Liu Y, et al. Effects of disturbance modes on the size of Microcystis f1os-aquae colonies [J]. Journal of Lake Sciences, 2019,31(2):355-364.
|
[40] |
Meijer J J, Ten Hoopen H J G, Luyben K Ch A M, et al. Effects of hydrodynamic stress on cultured plant cells: A literature survey [J]. Enzyme and Microbial Technology, 1993,15(3):234-238.
|
[41] |
宋 洋,张陵蕾,陈旻,等.流速对水库水华优势种铜绿微囊藻生长的影响研究 [J]. 四川大学学报:工程科学版, 2016,48(S1):25-32. Song Y, Zhang L L, Chen M, et al. Impacts of flow velocity on growth of dominant species Microcystis aeruginosa of algae-bloom in Reservoirs [J]. Journal of Sichuan University (Engineering Science Edition), 2016,48(S1):25-32.
|
[42] |
Zhong C. Effects of mixing intensity on colony size and growth of Microcystis aeruginosa [J]. Annales de Limnologie -International Journal of Limnology, 2019,55:12.DOI:10.1051/limn/2019011.
|
[43] |
杨弯弯,武氏秋贤,吴亦潇,等.恩诺沙星和硫氰酸红霉素对铜绿微囊藻的毒性研究 [J]. 中国环境科学, 2013,33(10):1829-1834. Yang W W, Hien V T T, Wu Y X, et al. Toxicity of enrofloxacin and erythromycin thiocyanate on Microcystis aeruginosa [J]. China Environmental Science, 2013,33(10):1829-1834.
|
[44] |
彭桂莹,陈永玲,韩玉珍,等.乳酸对铜绿微囊藻的抑藻效应及机理 [J]. 中国环境科学, 2016,36(4):1167-1172. Peng G Y, Chen Y L, Han Y Z, et al. The inhibitory effect of lactic acid on Microcystis aeruginosa and its mechanisms [J]. China Environmental Science, 2016,36(4):1167-1172.
|
[45] |
Yang G, Zhong C, Pan W, et al. Continuous hydrodynamic mixing weakens the dominance of Microcystis: evidences from microcosm and lab experiments [J]. Environmental Science and Pollution Research, 2022,29(11):15631-15641.
|
[46] |
Chatzizisis Y S, Coskun A U, Jonas M, et al. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior [J]. Journal of the American College of Cardiology, 2007,49(25):2379-2393.
|
[47] |
Chatzizisis Y S, Jonas M, Coskun A U, et al. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study [J]. Circulation, 2008,117(8): 993-1002.
|
[48] |
Joshi J B, Elias C B, Patole M S. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells [J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996, 62(2):121-141.
|
[49] |
刘春朝,王玉春,郑 重,等.剪切力对植物细胞悬浮培养的影响 [J]. 化工冶金, 1998,19(4):379-384. Liu C Z, Wang Y C, Zheng C, et al. Effects of shear stress on suspension cultivation of plant cells [J]. Engineering Chemistry & Metallurgy, 1998,19(4):379-384.
|
[50] |
谢小萍,李亚春,杭鑫,等.气温对太湖蓝藻复苏和休眠进程的影响 [J]. 湖泊科学, 2016,28(4):818-824. Xie X P, Li Y C, Hang X, et al. The effect of air temperature on the process of cyanobacteria recruitment and dormancy in Lake Taihu [J]. Journal of Lake Sciences, 2016,28(4):818-824.
|
[51] |
程 昊,张海平.缺磷及高光照条件下紊动对铜绿微囊藻生长的影响 [J]. 中国环境科学, 2020,40(2):816-823. Cheng H, Zhang H P. Effect of flow turbulence on the growth of Microcystis aeruginosa under phosphorus deficiency and high light intensity conditions [J]. China Environmental Science, 2020,40(2): 816-823.
|
[52] |
王婷婷,朱 伟,李林.不同温度下水流对铜绿微囊藻生长的影响模拟 [J]. 湖泊科学, 2010,22(4):563-568. Wang T T, Zhu W, Li L. Simulation on the hydrodynamic effects of Microcystis aeruginosa in different temperature conditions [J]. Journal of Lake Sciences, 2010,22(4):563-568.
|
|
|
|