|
|
Microbial protein production by using nitrogen extracted from microbial fuel cells |
LI Xiao-yue1, WANG Yue1, JIA Pei1, LI Ya-jie1, CHEN Jia-qi1, JIN Li-jun2, WANG Wen1, YANG Zi-yi1 |
1. College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China; 2. Inner Mongolia Taida Environmental Protection Safety Technology Development Co, Ltd, Tongliao 028000, China |
|
|
Abstract In this experiment, ammonium nitrogen in organic wastewater was recovered via microbial fuel cell (MFC). In MFC system, the recovery efficiency of ammonium nitrogen could reach 41.3%, along with electric energy of about 95.5J. The migration tendency of ammonium nitrogen matched well with Levenberg-Marquardt equation (R2>0.95). Subsequently, microbial protein (MP) was synthesized by hydrogen oxidizing bacteria (HOB), using CO2 and the extracted nitrogen from MFC. The CO2 sequestration rate was about 1.1LCO2/(L×d) and dry cell weight in HOB system was 2.41g/L. The protein content was 49.4%, and the production of amino acids was 1.19g/L. The amino acid content of MP produced in this experiment was higher than that of the Clupanodom punchtatus. Also, the amino acid species were more abundant than that of the plant protein feeds. Thus, MP performs the potential on market competitiveness and practical application. In this experiment, CO2 and nitrogen from wastes could be used for providing green and sustainable protein supply source, which played a positive role in promoting the resource utilization of organic wastewater.
|
Received: 25 July 2022
|
|
|
|
|
[1] |
张彤.活性初沉系统碳源回收及其作用机制研究[D]. 西安:西安建筑科技大学, 2018. Zhong T. A study on carbon sourse reclamation and mechanism of activated primary system[D]. Xi'an:Xi'an University of Architecture and Technology, 2018.
|
[2] |
姜瑞,曾红云,王强.氨氮废水处理技术研究进展[J]. 环境科学与管理, 2013,38(6):131-134. Jiang R, Zeng H Y, Wang Q. Research progress of ammonia nitrogen wastewater treatment technology[J]. Environmental Science and Managnent, 2013,38(6):131-134.
|
[3] |
Perez G, Saiz J, Ibanez R, et al. Assessment of the formation of inorganic oxidation by-products during the electrocatalytic treatment of ammonium from landfill leachates[J]. Water research:A journal of the international water association, 2012,46(8):2579-2590.
|
[4] |
Pernetcoudrier B, Qi W, Liu H, et al. Sources and pathways of nutrients in the semi-aridregion of Beijing-Tianjin, China[J]. Environmental Science & Technology, 2012,46(10):5294-5301.
|
[5] |
Yang Z Y, Tsapekos P, Zhang Y F, et al. Bio-electrochemically extracted nitrogen from residual resources for microbial protein production[J]. Bioresource Technology, 2021,337:125353.
|
[6] |
李荣彪,张云凤,雷雪琴,等.城市饮用水源氨氮污染监测分析——以凯里市为例[J]. 中国资源综合利用, 2022,40(3):145-148. Li R B, Zhang Y F, Lei X Q, et al. Analysis of ammonia nitrogen pollution monitoring in urban drinking water sources-Take Kaili City as an example[J]. China Resources Comprehensive Utilization, 2022,40(3):145-148.
|
[7] |
魏世勋,陆静怡,龙彦宇.物理化学法和生物法处理高硝态氮废水研究现状[J]. 山东化工, 2020,49(13):208-209. Wei S X, Lu J Y, Long Y Y. Research status of physicochemical and biological methods for the treatment of high nitrate nitrogen in wastewater[J]. Shangdong Chemical Industry, 2020,49(13):208-209.
|
[8] |
唐朝春,许荣明.化学法处理氨氮废水研究进展[J]. 应用化工, 2019, 48(4):878-882. Tang C C, Xu R M. Progress in chemical treatment of ammonia nitrogen wastewater[J]. Applied Chemical Industry, 2019,48(4):878-882.
|
[9] |
魏旺,孟冠华,刘宝河,等.三维电极电解法处理氨氮废水的研究[J]. 工业水处理, 2018,38(8):74-77. Wei W, Meng G H, Liu B H, et al. Research on the three-dimensional electrode electrolysis method for the treatment of ammonia nitrogen wastewater[J]. Industrial Water Treatment, 2018,38(8):74-77.
|
[10] |
Gupta V K, Sadegh H, Yari M, et al. Removal of ammonium ions from wastewater:A short review in development of efficient methods[J]. Global Journal of Environmental Science and Management, 2015,1(2):149-158.
|
[11] |
Khoshnevisan B, Dodds M, Tsapekos P, et al. Coupling electrochemical ammonia extraction and cultivation of methane oxidizing bacteria for production of microbial protein[J]. Journal of Environmental Management, 2020,265:110560.
|
[12] |
Christiaens E R M, Udert M K, Arends B A J, et al. Membrane stripping enables effective electrochemical ammonia recovery from urine while retaining microorganisms and micropollutants[J]. Water Research, 2018,150:349-357.
|
[13] |
宋亚男.生物电化学系统阴极改性及其脱氮研究[D]. 南京:东南大学, 2020. Song Y N. Study on cathode modification and denitrification in bioelectrochemical system[D]. Nanjing:SouthEast University, 2020.
|
[14] |
浦斯茗,高李璟.生物法处理石油工业废水综述[J]. 云南化工, 2019, 46(5):21-23. Pu S M, Gao L J. Review on biological treatment of petroleum industry wastewater[J]. Yunnan Chemical Technology, 2019,46(5):21-23.
|
[15] |
蒋晴.同步去除重金属和氮磷的新型生物电化学系统构建与效能[D]. 哈尔滨:哈尔滨工业大学, 2020. Jiang Q. The construction of a novel microbial electrochemical system for simultaneous removal of heavy metals, nitrogen and phosphorus[D]. Harbin:Harbin industrial university, 2020.
|
[16] |
罗昕怡,石玉翠,叶延超,等.生物电化学系统从废水中回收氨的研究进展[J]. 工业水处理, 2022,42(1):15-20. Luo X Y, Shi Y C, Ye Y Z, et al. Advances in the recovery of ammonia from wastewater by bioelectrochemical systems[J]. Industrial Water Treatment, 2022,42(1):15-20.
|
[17] |
胡双俊,贺春尧,李宁.生物电化学系统处理难降解有机污染物研究进展[J]. 能源化工, 2019,40(1):40-45. Hu S J, He C X, Li N. Bioelectrochemical system for treatment of refractory organic pollutants[J]. Energy Chemical Industry, 2019, 40(1):40-45.
|
[18] |
黄彦琦,赵少宏,周亚,等.微生物燃料电池运用于废水脱氮的研究进展[J]. 能源与环境, 2021(6):70-71,74. Huang Y Q, Zhao S H, Zhou Y, et al. Research progress in application of microbial fuel cell to wastewater denitrification[J]. Energy and Environment, 2021,(6):70-71,74.
|
[19] |
李文英,刘玉香,任瑞鹏,等.微生物燃料电池在水与废水脱氮方面的研究进展[J]. 化工进展, 2019,38(2):1097-1106. Li W Y, Liu Y X, Ren R P, et al. Research progress on removal of nitrogen in water and wastewater by microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2019,38(2):1097-1106.
|
[20] |
Li H N, Qin Q D. Challenges for China's carbon emissions peaking in 2030:A decomposition and decoupling analysis[J]. Journal of Cleaner Production, 2019,207:857-865.
|
[21] |
刘一山,伍安国,冉敬明,等.碳中和及实现碳中和目标的主要措施[J]. 纸和造纸, 2022,41(2):30-35. Liu Y S, Wu A G, Ran J M, et al. Carbon neutrality and the measures to realize carbon neutrality[J]. Paper and Paper Making, 2022,41(2):30-35.
|
[22] |
Khoshnevisan B, Tsapekos P, Zhang Y F, et al. Urban biowaste valorization by coupling anaerobic digestion and single cell protein production[J]. Bioresource Technology, 2019,290:121743.
|
[23] |
Ranganathan P, Savithri S. Techno-economic analysis of microalgae-based liquid fuels production from wastewater via hydrothermal liquefaction and hydroprocessing[J]. Bioresource Technology, 2019,284:256-265.
|
[24] |
徐晨,杨芷,唐晓燕,等.动物性蛋白质饲料在家禽生产中应用的研究进展[J]. 广东饲料, 2021,30(2):38-40. Xu C, Yang Z, Tang X Y, et al. Research progress in application of animal protein feed in poultry production[J]. Guangdong Feed, 2021,30(2):38-40.
|
[25] |
王红,石宝明.单细胞蛋白饲料的研究及其在畜禽生产中的应用[J]. 饲料博览, 2011,(1):12-14. Wang H, Shi B M. Research application of single cell protein feed in livestocks[J]. Feed Review Enterprise Management, 2011,(1):12-14.
|
[26] |
陶虎春,谢勇,张丽娟,等.一株氢氧化细菌的生长条件及其对不同氮源利用的研究[J]. 北京大学学报(自然科学版), 2021,57(4):756-764. Tao H Y, Xie Y, Zhang L J, et al. Growth conditions of a hydrogen-oxidizing bacterium and its utilization of different nitrogen sources[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021,57(4):756-764.
|
[27] |
程寒,刘亚利.厌氧消化过程中氨氮的回收利用研究进展[J]. 现代化工, 2020,40(10):40-44. Cheng H, Liu Y L. Research progress on recovery and utilization of ammoniacal nitrogen in anaerobic digestion[J]. Modern Chemical Industry, 2020,40(10):40-44.
|
[28] |
毛开伟.微生物电芬顿系统强化降解有机废水工艺及机理研究[D]. 北京:北京化工大学, 2020. Mao K W. Study on the process and mechanism of enhanced degradation of organic wastewater by microbial electric fenton system[D]. Beijing:Beijing University of Chemical Technology, 2020.
|
[29] |
牛子津.高含氮废水生物合成微生物蛋白技术及机理研究[D]. 北京:北京化工大学, 2021. Niu Z J. Research on biosynthesis microbial protein technology and mechanism of high nitrogen wastewater[D]. Beijing:Beijing University of Chemical Technology, 2021.
|
[30] |
Dou J W, Huang Y M, Ren H W, et al. Autotrophic, heterotrophic, and mixotrophic nitrogen assimilation for single-cell protein production by two hydrogen-oxidizing bacterial strains[J]. Applied biochemistry and biotechnology, 2019,187(1):338-351.
|
[31] |
Zhang Y F, Angelidaki I. Submersible microbial desalination cell for simultaneous ammonia recovery and electricity production from anaerobic reactors containing high levels of ammonia[J]. Bioresource Technology, 2015,177:233-239.
|
[32] |
Haddadi S, Nabi-Bidhendi G, Mehrdadi N. Nitrogen removal from wastewater through microbial electrolysis cells and cation exchange membrane(Article)[J]. Journal of Environmental Health Science and Engineering, 2014,12(1):48.
|
[33] |
Min b, Logan E B. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell[J]. Environmental Science & Technology, 2004,38(21):5809-5814.
|
[34] |
Zhao N N, Jiang Y N, Merlin A M, et al. Electricity generation and microbial communities in microbial fuel cell powered by macroalgal biomass[J]. Bioelectrochemistry, 2018,123:145-149.
|
[35] |
Schaetzle O. Bacteria and yeasts as catalysts in microbial fuel cells:electron transfer from micro-organisms to electrodes for green electricity[J]. Energy & Environmental Science, 2008,1(6):607-620.
|
[36] |
Katuri P K, Scott K, Head M I, et al. Microbial fuel cells meet with external resistance[J]. Bioresource Technology, 2011,102(3):2758-2766.
|
[37] |
黄倩.黄土高原土壤固碳微生物及其固定CO2的机理[D]. 杨凌:西北农林科技大学, 2021. Huang Q. The mechanism of CO2 fixation by soil carbon-fixation microorganisms in the Loess Plateau[D]. Yangling:Northwest A&F University, 2021.
|
[38] |
肖月娟,李润丰,郑立红.斑鰶鱼肉蛋白质氨基酸组成分析及评价[J]. 营养学报, 2011,33(4):413-415. Xiao Y J, Li R F, Zheng L H. Analysis and evaluation of protein and amino acids composition of fish meat for clupanodom punchtatus[J]. Acta Nutrimenta Sinica, 2011,33(4):413-415.
|
[39] |
侯悦,张彦龙,张多英,等.细菌单细胞蛋白:机遇、挑战与前景[J]. 生物技术, 2020,30(6):615-621. Hou Y, Zhang Y L, Zhang D Y, et al. Studing advances in the production of single cell proteinsby hydrooxidizing bacteria[J]. Biotechnology, 2020,30(6):615-621.
|
|
|
|