|
|
Estimation of anthropogenic heat in China using points-of-interest and multisource remote sensing data |
QIAN Jing1, MAO Li-wei2, YANG Xu-chao1, CHEN Qian1, LI Fei-xiang1, WU Xin-tong1, CHEN Bo-ru1 |
1. Ocean College, Zhejiang University, Zhoushan 316021, China; 2. Hangzhou City Planning and Design Academy, Hangzhou 310012, China |
|
|
Abstract Statistics on energy consumption, transportation, population and GDP had been used to estimate anthropogenic heat emissions from industries, transportation, buildings, and human metabolism at the prefecture level for mainland China in 2019. Using the top-down energy inventory method and Cubist machine learning algorithm, anthropogenic heat flux (AHF) models were built by integrating points-of-interest (POI) datafrom a variety of categories and multisource remote sensing data. A gridded anthropogenic heat flux (AHF) benchmark dataset at 1km spatial resolution had generated for China in 2019. The relationships between various geographic predictors and AHF from different heat sources were further analyzed. Results showed that high-value areas of AHF were generally distributed to metropolitan areas and cities with relatively developed industries. The values of AHF in urban centers in mainland China ranged between 80 and 200W/m2. The highest values were reported for some heavy industrial areas up to 519.2W/m2. Cubist models can explore the nonlinear relationships between individual predictors and AHF from different heat sources and give the relative importance of the predictors. POI-related variables are the most important predictors and can further refine the estimation of AHF. Compared with previous studies, the spatial distribution of AHF from different heating components was effectively distinguished, highlighting the potential of POI data in improving the precision of AHF mapping. The new gridded AHF dataset in 2019 for mainland China can serve as important input for urban climate and urban environment numerical models.
|
Received: 17 September 2022
|
|
|
|
|
[1] Crutzen P J. New directions:The growing urban heat and pollution'island' effect; impact on chemistry and climate[J]. Atmospheric environment, 2004,38(21):3539-3540. [2] 石广玉,戴 铁,檀赛春,等.全球年平均人为热释放气候强迫的估算[J].气候变化研究进展, 2010,6(2):119-122. Shi G Y, Dai T, Tan S C, et al. Preliminary estimate of the global average annual climate forcing resulted from anthropogenic heat release[J]. Advances in Climate Change Research, 2010,6(2):119-122. [3] Ichinose T, Shimodozono K, Hanaki K. Impact of anthropogenic heat on urban climate in Tokyo[J]. Atmospheric Environment, 1999,33(24/25):3897-3909. [4] Fan H, Sailor D. Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia:A comparison of implementations in two PBL schemes[J]. Atmospheric Environment, 2005,39(1):73-84. [5] Chen F, Yang X, Wu J. Simulation of the urban climate in a Chinese megacity with spatially heterogeneous anthropogenic heat data[J]. Journal of Geophysical Research:Atmospheres, 2016,121(10):5193-5212. [6] Miao S, Chen F, Lemone M A, et al.An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing[J]. Journal of Applied Meteorology and Climatology, 2009,48(3):484-501. [7] Feng J, Wang Y, Ma Z, et al. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China[J]. Journal of Climate, 2012,25:7187-7203. [8] 佟 华,刘辉志,桑建国,等.城市人为热对北京热环境的影响[J]. 气候与环境研究, 2004,9(3):409-421. Tong H, Liu H Z, Sang J G, et al. The impact of urban anthropogenic heat on Beijing heat environment[J]. Climatic and Environmental Research, 2004,9(3):409-421. [9] Xie M, Liao J, Wang T, et al. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China[J]. Atmospheric Chemistry and Physics, 2016,16(10):6071-6089. [10] Sailor D J. A review of methods for estimating anthropogenic heat and moisture emissions in the urban environment[J]. International Journal of Climatology, 2011,31(2):189-199. [11] Sailor D J, Lu L. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas[J]. Atmospheric Environment, 2004,38(17):2737-2748. [12] 王业宁,孙然好,陈利顶.人为热计算方法的研究综述[J]. 应用生态学报, 2016,27(6):2024-2030. Wang Y N, Sun R H, Chen L D. Review on studies of anthropogenic heat emission[J]. Chinese Journal of Applied Ecology, 2016,27(6):2024-2030. [13] Lu Y, Wang H, Wang Q G, et al. Global anthropogenic heat emissions from energy consumption, 1965~2100[J]. Climatic Change, 2017,145 (3):459-468. [14] Flanner M G.Integrating anthropogenic heat flux with global climate models[J]. Geophysical Research Letters, 2009,36(2):L02801. [15] Yang W, Luan Y, Liu X, et al. A new global anthropogenic heat estimation based on high-resolution nighttime light data[J]. Scientific Data, 2017,4:170116. [16] Chen B, Shi G. Estimation of the distribution of global anthropogenic heat flux[J]. Atmospheric and Oceanic Science Letters, 2012,5:108-112. [17] 马盼盼,吾娟佳,杨续超,等.基于多源遥感信息的人为热排放量空间化-以浙江省为例[J]. 中国环境科学, 2016,36(1):314-320. Ma P P, Wu J J, Yang X C, et al. Spatialization of anthropogenic heat using multi-sensor remote sensing data:a case study of Zhejiang Province, East China[J]. China Environmental Science, 2016,36(1):314-320. [18] Chen S, Hu D. Parameterizing anthropogenic heat flux with an energy-consumption inventory and multi-source remote sensing data[J]. Remote Sensing, 2017,9(11):1165. [19] Chen Q, Yang X, Ouyang Z, et al. Estimation of anthropogenic heat emissions in China using Cubist with points-of-interest and multisource remote sensing data[J]. Environmental Pollution, 2020, 266:115183. [20] 薛 冰,赵冰玉,肖 骁,等.基于POI大数据的资源型城市功能区识别方法与实证——以辽宁省本溪市为例[J]. 人文地理, 2020,35(4):81-90. Xue B, Zho B Y, Xiao X, et al. A POI data-based study on urban functional areas of the resources-based city:a case study of Benxi, Liaoning[J]. Human Geography, 2020,35(4):81-90. [21] 池 娇,焦利民,董 婷,等.基于POI数据的城市功能区定量识别及其可视化[J]. 测绘地理信息, 2016,41(2):68-73. Chi J, Jiao L M, Dong T, et al. Quantitative identification and visualization of urban functional area based on POI data[J]. Journal of Geomatics, 2016,41(2):68-73. [22] Gao S, Janowicz K, Couclelis H. Extracting urban functional regions from points of interest and human activities on location-based social networks[J]. Transactions in GIS, 2017,21(3):446-467. [23] 王 堃,高佳佳,田贺忠,等.基于POI兴趣点的排放清单空间分配方法[J]. 中国环境科学, 2017,37(6):2377-2382. Wang K, Gao J J, Tian H Z, et al. An emission inventory spatial allocatemethod based on POI data[J]. China Environmental Science, 2017,37(6):2377-2382. [24] 蔡一乐,曹诗颂,杜明义,等.中国地级市人为热总量的估算及驱动因素分析[J]. 地球信息科学学报, 2021,23(3):405-418. Cai Y L, Cao S S, Du M Y, et al.Estimation and analysis of driving factors of total AHF in prefecture-level of China[J]. Journal of Geo-information Science, 2021,23(3):405-418. [25] Dong Y, Varquez A, Kanda M. Global anthropogenic heat flux database with high spatial resolution[J]. Atmospheric Environment, 2017,150:276-294. [26] Li X, Li X, Li D, et al. A preliminary investigation of Luojia-1night-time light imagery[J]. Remote Sensing Letters, 2019,10(6):526-535. [27] Li X, Liu Z, Chen X, et al. Assessing the ability of Luojia 1-01imagery to detect feeble nighttime lights[J]. Sensors, 2019,19(17):3708. [28] Esch T, Heldens W, Hirner A, et al. Breaking new ground in mapping human settlements from space-The Global Urban Footprint[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,134:30-42. [29] 禹文豪,艾廷华.核密度估计法支持下的网络空间POI点可视化与分析[J]. 测绘学报, 2015,44(1):82-90. Yu W H, Ai T H. The visualization and analysis of POI features under network space supported by kernel density estimation[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(1):82-90. [30] 吴红波,郭 敏,杨肖肖.基于GIS网络分析的城市公交车路网可达性[J]. 北京交通大学学报, 2021,45(1):70-77. Wu H B, Guo M, Yang X X. Accessibility of urban bus networks based on GIS network analysis[J]. Journal of Beijing Jiaotong University, 2021,45(1):70-77. [31] 禹文豪,艾廷华,刘鹏程,等.设施POI分布热点分析的网络核密度估计方法[J]. 测绘学报, 2015,44(12):1378-1383. Yu W H, Ai T H, Liu P C, et al. Network kernel density estimation for the analysis of facility POI hotspots[J]. Acta Geodaetica et Cartographica Sinica, 2015,44(12):1378-1383. [32] 国家统计局.中国统计年鉴(2020)[J]. 北京:中国统计出版社. National Bureau of Statistics of China. China statistical yearbook (2020)[J]. Beijing:China Statistics Press. [33] 国家统计局.中国能源统计年鉴(2020)[J].北京:中国统计出版社. National Bureau of Statistics of China. China energy statistical yearbook (2020)[J]. Beijing:China Statistics Press. [34] 王业宁,陈婷婷,孙然好.北京主城区人为热排放的时空特征研究[J]. 中国环境科学, 2016,36(7):2178-2185. Wang Y N, Chen T T, Sun R H. Assessing the spatiotemporal characteristics of anthropogenic heat in Beijing[J]. China Environmental Science, 2016,36(7):2178-2185. [35] 李 政,付 峰,麻林巍,等.基于能源平衡表的中国能流图[J]. 中国能源, 2006,28(9):5-10,18. Li Z, Fu F, Ma L W, et al. China's energy flow chart based on energy balance sheet[J]. Energy of China, 2006,28(9):5-10,18. [36] Quah A K, Roth M. Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore[J]. Atmospheric Environment, 2012,46:92-103. [37] Quinlan J R. Learning with continuous classes[C]. 5th Australian joint conference on artificial intelligence, 1992:343-348. [38] Quinlan J R. Combining instance-based and model-based learning[C]. Proceedings of the tenth international conference on machine learning, 1993:236-243. [39] Xu Y, Ho H C, Wong M S, et al.Evaluation of machine learning techniques with multiple remote sensing datasets in estimating monthly concentrations of ground-level PM2.5[J]. Environmental Pollution, 2018,242:1417-1426. [40] Walton J T. Subpixel urban land cover estimation[J]. Photogrammetric Engineering & Remote Sensing, 2008,74(10):1213-1222. [41] Miller T. Explanation in artificial intelligence:Insights from the social sciences[J]. Artificial Intelligence, 2019,267:1-38. [42] Shimizu G Y, Izbicki R, De Carvalho A C. Model interpretation using improved local regression with variable importance[J]. arXiv preprint arXiv, 2022,2209.05371. [43] Liang L, Di L, Zhang L, et al. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method[J]. Remote Sensing of Environment, 2015,165:123-134. [44] Lu D, Tian H, Zhou G, et al. Regional mapping of human settlements in southeastern China with multisensor remotely sensed data[J]. Remote Sensing of Environment, 2008,112(9):3668-3679. [45] Li X, Xu H, Chen X, et al. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China[J]. Remote Sensing, 2013,5(6):3057-3081. [46] Zhang P, Yuan C, Sun Q, et al. Satellite-based detection and characterization of industrial heat sources in China[J]. Environmental Science & Technology, 2019,53(18):11031-11042. [47] Yang B, Yang X, Leung L R, et al. Modeling the impacts of urbanization on summer thermal comfort:the role of urban land use and anthropogenic heat[J]. Journal of Geophysical Research:Atmospheres, 2019,124(13):6681-6697. [48] 谢 旻,朱宽广,王体健,等.中国地区人为热分布特征研究[J]. 中国环境科学, 2015,35(3):728-734. Xie M, Zhu K G, Wang T J, et al. Study on the distribution of anthropogenic heat flux over China[J]. China Environmental Science, 2015,35(3):728-734. [49] 施 婕,谢 旻,朱宽广,等.中国城市人为热通量估计及时空分布[J]. 中国环境科学, 2020,40(4):1819-1824. Shi J, Xie M, Zhu K G, Wang T J, et al. Estimation of anthropogenic heat flux and its temporal and spatial distribution in Chinese cities[J]. China Environmental Science, 2020,40(4):1819-1824. [50] Xie M, Zhu K, Wang T, et al. Changes in regional meteorology induced by anthropogenic heat and their impacts on air quality in South China[J]. Atmospheric Chemistry and Physics, 2016,16(23):15011-15031. [51] 冯倍嘉,王伟文,黄志炯,等.珠江三角洲地区人为热排放演变趋势及不确定性分析[J]. 环境科学学报, 2021,41(6):2291-2301. Feng B J, Wang W W, Huang Z J, et al. An analysis of evolution trend and uncertainty of anthropogenic heat emissions in the Pearl River Delta Region[J] Acta Scientiae Circumstantiae, 2021,41(6):2291-2301. [52] Zhang L, Meng Q, Sun Z, et al.Spatial and temporal analysis of the mitigating effects of industrial relocation on the surface urban heat island over China[J]. ISPRS International Journal of Geo-Information, 2017,6(4):121. [53] Fan S, Chan-Kang C. Regional road development, rural and urban poverty:Evidence from China[J]. Transport Policy, 2008,15(5):305-314. [54] Weng Q, Lu D, Liang B. Urban surface biophysical descriptors and land surface temperature variations[J]. Photogrammetric Engineering & Remote Sensing, 2006,72(11):1275-1286. [55] Shin D, Aliaga D, Tunçer B, et al. Urban sensing:Using smartphones for transportation mode classification[J]. Computers, Environment and Urban Systems, 2015,53:76-86. [56] Sailor D J, Brooks A, Hart M, et al. A bottom-up approach for estimating latent and sensible heat emissions from anthropogenic sources[C]//Seventh symposium on the urban environment, San Diego, California, 2007:10-13. [57] Wang S, Hu D, Yu C, et al. Mapping China's time-series anthropogenic heat flux with inventory method and multi-source remotely sensed data[J]. Science of the Total Environment, 2020,734:139457. |
|
|
|