|
|
Study on anaerobic conversion mechanism of sulfate and ammonia in organic wastewater |
REN Hong-li1, YUAN Lin-jiang1, CHEN Xi2 |
1. Key Laboratory of Northwest Water Resources and Environmental Ecology, Ministry of Education, Key Laboratory of Enviromental Egineering of Shaanxi Province, School of Enviromental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; 2. School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an 710048, China |
|
|
Abstract By gradually increasing the influent n(NH4+-N)/n(SO42-) ratio, sulfate reduction-ammonia oxidation (SRAO) was achieved in an up-flow anaerobic sludge blanket (UASB) reator under anaerobic organic conditions (ORP=(-334.3±18.2) mV, DO=(0.10±0.5) mg/L). The effects of different COD on the removel performance of nitrogen and sulfur were studied. The transformation mechanism was discussed by analyzing the SRAO products, the operation results of different stages and the variation of microbal flora. The results showed that the SRAO was that SO42- oxidized NH4+-N to NO2--N and generated S to accumulate in the sludge phase. The intermediate product NO2--N was reduced by autotrophic/heterotrophic denitrifying bacteria, and part of SO42- was reduced to S2- by sulfate reducing bacteria (SRB). Synergistic metabolism among microorganisms achieved simultaneous removal of nitrogen and sulfur in the system. Increasing the influent N/S ratio can make more NH4+-N converted to NO2--N to be utilized by denitrifying bacteria, but when the N/S ratio was increased to 4, the sulfur autotrophic denitrification strongly affected the removal of SO42-, and the abundance of Thiobacillus in the reactor increased by 3.36% at this stage. The simultaneous removal of NH4+-N and SO42- did not occur under inorganic conditions without organic matter. Increasing the influent COD concentration to 150mg/L promoted the coupling of SRAO and denitrification, and improved the nitrogen and sulfur removal performance of the system. The total abundance of SRB (Desulfococcus, Desulfatiglans) and various denitrifying bacteria (Methyloversatilis, Longilinea, Simplicispira, Bdellovibrio, Azospira, etc.) in the reactor increased by 1.584% and 6.081%, respectively. When COD=250mg/L, the enhanced sulfated reduction reaction produced more S2-, which inhibited the SRAO activity and affected the removal of NH4+-N in the system.
|
Received: 17 January 2023
|
|
|
|
|
[1] |
Fdz-Polanco F, Fdz-Polanco M, Fernandez N, et al. New process for simultaneous removal of nitrogen and sulphur under anaerobic conditions[J]. Water Research, 2001,35(4):1110-1114.
|
[2] |
Fdz-Polanco F, Fdz-Polanco M, Fernandez N, et al. Combining the biological nitrogen and sulfur cycles in anaerobic conditions[J]. Water Science and Technology, 2001,44(8):77-84.
|
[3] |
Fdz-Polanco F, Fdz-Polanco M, Fernandez N, et al. Simultaneous organic nitrogen and sulfate removal in an anaerobic GAC fluidised bed reactor[J]. Water Science and Technology, 2001,44(4):15-22.
|
[4] |
Schrum H N, Spivack A J, Kastner M, et al. Sulfate-reducing ammonium oxidation:A thermodynamically feasible metabolic pathway in subseafloor sediment[J]. Geology, 2009,37(10):939-942.
|
[5] |
Rios-Del Toro E E, López-Lozano N E, Cervantes F J. Up-flow anaerobic sediment trapped (UAST) reactor as a new configuration for the enrichment of anammox bacteria from marine sediments[J]. Bioresource Technology, 2017,238:528-533.
|
[6] |
Amend J P, Rogers K L, Shock E L, et al. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy[J]. Geobiology, 2003,1(1):37-58.
|
[7] |
张丽,黄勇,袁怡,等.硫酸盐/氨的厌氧生物转化试验研究[J].环境科学, 2013,34(11):4356-4361. Zhang L, Huang Y, Yuan Y, et al. Study on the biotransformation of sulfate and ammonia in anaerobic conditions[J]. Environmental Science, 2013,34(11):4356-4361.
|
[8] |
Liu S T, Yang F L, Zheng G, et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal[J]. Bioresource Technology, 2008,99(15):6817-6825.
|
[9] |
刘福鑫,黄勇,袁怡,等.厌氧硫酸盐还原-氨氧化的研究[J].环境工程学报, 2015,9(2):699-704. Liu F X, Huang Y, Yuan Y, et al. Study of anaerobic sulfate-reducing ammonium oxidation reaction[J]. Chinese Journal of Environmental Engineering, 2015,9(2):699-704.
|
[10] |
完颜德卿,黄勇,毕贞,等.硫酸盐还原氨氧化体系中基质转化途径[J].环境科学, 2017,38(8):3406-3414. WanYan D Q, Huang Y, Bi Z, et al. Conversion Pathways of Substrates in Sulfate-Reducing Ammonia Oxidation System[J]. Environmental Science, 2017,38(8):3406-3414.
|
[11] |
蔡靖,蒋坚祥,郑平.一株硫酸盐型厌氧氨氧化菌的分离和鉴定[J].中国科学:化学, 2010,40(4):421-426. Cai J, Jiang J X, Zheng P, et al. Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal[J]. Scientia Sinica Chimica, 2010,40(4):421-426.
|
[12] |
毕贞,董石语,黄勇.ANAMMOX培养物中硫酸盐型氨氧化生物转化机制[J].环境科学, 2021,42(3):1477-1487. Bi Z, Dong S Y, Huang Y, et al. Biological conversion mechanism of sulfate reduction ammonium oxidation in ANAMMOX consortia[J]. Environmental Science, 2021,42(3):1477-1487.
|
[13] |
董凌霄,吕永涛,韩勤有,等.硫酸盐还原对氨氧化的影响及其抑制特性研究[J].西安建筑科技大学学报(自然科学版), 2006,38(3):425-428,432. Dong L X, Lv Y T, Han Q Y, et al. Study on the effect of sulfate reduction on ammonia oxidation and its inhibitory characteristics[J]. Journal of Xi'an University of Architecture & Technology (Natural Science), 2006,38(3):425-428,432.
|
[14] |
赵庆良,李巍,徐永波,等.厌氧附着生长反应器处理氨氮和硫酸盐废水的研究[J].黑龙江大学自然科学学报, 2007,24(4):421-426. Zhao Q L, Li W, Xu Y B, et al. Study on the treatment of ammonia nitrogen and sulfate wastewater by anaerobic attached growth reactor[J]. Journal of Natural Science of Heilongjiang University, 2007,24(4):421-426.
|
[15] |
Sabumon P C. Development of a novel process for anoxic ammonia removal with sulphidogenesis[J]. Process Biochemistry, 2008,43(9):984-991.
|
[16] |
Rikmann E, Zekker I, Tomingas M, et al. Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters[J]. Desalination and Water Treatment, 2014,57(7):3132-3141.
|
[17] |
Van De Graaf A A, De Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiol, 1996,142(8):2187-2196.
|
[18] |
国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Analytical methods for water and wastewater monitoring (4th ed)[M]. Beijing:China Environmental Science Press, 2002.
|
[19] |
王彬斌.颗粒态有机物及胞外聚合物对活性污泥结构和特性影响研究[D].西安:西安建筑科技大学, 2014. Wang B B. Study on the influence of granular organic matter and extracellular polymers on the structure and characteristics of activated sludge[D]. Xi'an:Xi'an University of Architecture and Technology, 2014.
|
[20] |
Moulder J F, Chastain J, King R C. Handbook of x-ray photoelectron spectroscopy:a reference book of standard spectra for identification and interpretation of XPS data[J]. Chemical Physics Letters, 1992, 220(1):7-10.
|
[21] |
李祥,黄勇,袁怡,等.自养厌氧硫酸盐还原/氨氧化反应器启动特性[J].化工学报, 2012,63(8):2606-2611. Li X, Huang Y, Yuan Y, et al. Starting characteristics of a reactor for simultaneous reduction of sulfate and oxidation of ammonium[J]. Journal of Chemical Industry and Engineering, 2012,63(8):2606-2611.
|
[22] |
袁怡,黄勇,李祥,等.硫酸盐还原-氨氧化反应的特性研究[J].环境科学, 2013,34(11):4362-4369. Yuan Y, Huang Y, Li X, et al. Characteristics of Sulfate Reduction-Ammonia Oxidation Reaction[J]. Environmental Science, 2013,34(11):4362-4369.
|
[23] |
袁林杰,袁林江,陈希,等.厌氧氨氧化UASB系统对氨氮的超量去除机制研究[J].中国环境科学, 2021,41(10):4686-4694. Yuan L J, Yuan L J, Chen X, et al. Mechanism of excessive removal of ammonia nitrogen by anammox UASB system[J]. China Environmental Science, 2021,41(10):4686-4694.
|
[24] |
Sabumon P C. Anaerobic ammonia removal in presence of organic matter:a novel route[J]. Journal of Hazardous Materials, 2007,149(1):49-59.
|
[25] |
Sabumon P C. Effect of potential electron acceptors on anoxic ammonia oxidation in the presence of organic carbon[J]. Journal of Hazardous Materials, 2009,172(1):280-288.
|
[26] |
Zhang D D, Cui L, Zhu H, et al. Treatment performance and microbial community under ammonium sulphate wastewater in a sulphate reducing ammonium oxidation process[J]. Environmentai Technology, 2021,42(19):2982-2990.
|
[27] |
Lin S, Mackey H R, Hao T, et al. Biological Sulfur Oxidation in Wastewater Treatment:A Review of Emerging Opportunities[J]. Water Research, 2018,143(15):399-415.
|
[28] |
倪丙杰,徐得潜,刘绍根.污泥性质的重要影响物质-胞外聚合物(EPS)[J].环境科学与技术, 2006,29(3):108-110. Ni B J, Xu D Q, Liu S G. Extracellular polymeric substance (EPS) and its influence on properties of activated sludge[J]. Environmental science and technology, 2006,29(3):108-110.
|
[29] |
李宽峰,吴鹏,沈耀良,等.含硫酸盐废水处理研究现状与展望[J].水处理技术, 2013,39(11):17-22. Li K F, Wu P, Shen Y L, et al. Development and prospects of the sulfate wastewater treatment[J]. Technology of Water Treatment, 2013,39(11):17-22.
|
[30] |
马瑞婕,刘永红,梁继东,等.基于颗粒污泥的短程反硝化USB反应器启动和运行研究[J].中国环境科学, 2022,42(5):2129-2135. Ma R J, Liu Y H, Liang J D. Study on start-up and operation of USB reactor for partial denitrification based on granular sludge[J]. China Environmental Science, 2022,(5):2129-2135.
|
[31] |
李丛丛.废水中硫化物的生成、硫化物对生化系统的影响及其处理技术的研究[D].青岛:青岛科技大学, 2014. Li C C. Research on the formation of sulfides in wastewater, the influence of sulfides on biochemical systems and their treatment technologies[D]. Qingdao:Qingdao University of Science and Technology, 2014.
|
[32] |
Beller H R, Chain P S G, Letain T E, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of bacteriology, 2006,188(4):1473-1488.
|
[33] |
王拓.厌氧氨氧化与硫自养反硝化两段式耦合工艺运行机理研究[D].天津:天津城建大学, 2020. Wang T. Study on the operation mechanism of two-stage coupling process of anaerobic ammonium oxidation and sulfur autotrophic denitrification[D]. Tianjin:Tianjin Chengjian University, 2020.
|
[34] |
王思宇,李军,王秀杰,等.添加芽孢杆菌污泥反硝化特性及菌群结构分析[J].中国环境科学, 2017,37(12):4649-4656. Wang S Y, Li J, Wang X J, et al. Denitrification characteristics of Bacillus subtilis sludge and analysis of microbial community structure[J]. China Environmental Science, 2017,37(12):4649-4656.
|
[35] |
Wang D P, Liu B, Ding X C, et al. Performance evaluation and microbial community analysis of the function and fate of ammonia in a sulfate-reducing EGSB reactor[J]. Applied Microbiology Biotechnology, 2017,101(20):7729-7739.
|
[36] |
Qin Y L, Wei Q Y, Zhang Y Y, et al. Nitrogen removal from ammonium-and sulfate-rich wastewater in an upflow anaerobic sludge bed reactor:performance and microbial community structure[J]. Ecotoxicology, 2021,30(8):1719-1730.
|
|
|
|