|
|
Solubility of in situ SDS microemulsion on chlorinated hydrocarbon mixed pollutants in an aquifer |
HAN Yu-jiao, ZHANG Wei hong, DONG Jun, MO Yan-yang, LIANG Xue |
National and Local Joint Engineering Laboratory of Petrochemical Contaminated Site Control and Remediation Technology, College of New Energy and Environment, Jilin University, Changchun 130021, China |
|
|
Abstract In order to prepare an in situ microemulsion suitable for the efficient solubilization of a variety of chlorinated hydrocarbon mixed pollutants in aquifers, this study used a mixture of chlorinated hydrocarbons such as PCE, CT, TCE and CF as the organic phase, and selected a mixture of sodium dodecyl sulfate (SDS), n-butanol and potassium chloride (KCl) as the precursor solution of microemulsion to construct an in situ microemulsion system. The effect of layer temperature and inorganic salt composition on the solubilization effect of in situ microemulsion was evaluated. The experimental results show that there is a quadratic function relationship between the concentration of n-butanol in microemulsion and the equivalent alkyl carbon number (EACN) of mixed chlorinated hydrocarbons, which can be used to determine the formulation parameters of the precursor liquid of microemulsion in the contaminated site of mixed chlorinated hydrocarbons. The solubility of chlorinated hydrocarbons in microemulsion can reach more than 500g/L,and the solubilization capacity is PCE>CT>TCE>CF. The viscosity of the precursor fluid was less than 2cp, and it had good migration performance in the underground environment. zeta potential was negative, which means it is not easy to be absorbed by a negatively charged medium. Temperature (10~20°C) has little effect on the solubilization of chlorinated hydrocarbons in microemulsion. The low concentration of chemical composition in water favored the dissolution of chlorinated hydrocarbons in microemulsion, and the order of influence of inorganic salt cations is Ca2+>Mg2+>K+>Na+.
|
Received: 11 February 2023
|
|
|
|
|
[1] |
李传维,迟克宇,杨乐巍,等.碱活化过硫酸盐在某氯代烃污染场地地下水修复中的应用[J]. 环境工程学报, 2021,15(6):1916-1926. Li C W, Chi K Y, Yang L W, et al. Application of alkali-activated persulfate in groundwater remediation of a chlorinate.d hydrocarbon contaminated site[J]. Chinese Journal of Environmental Engineering, 2021,15(6):1916-1926.
|
[2] |
张凤君,刘哲华,苏小四,等.土壤类型及组分对热活化过硫酸盐氧化降解土壤中挥发性氯代烃的影响[J]. 吉林大学学报(地球科学版), 2018,48(4):1212-1220. Zhang F J, Liu Z H, Su X S, et al. Effect of soil type and composition on oxidative degradation of volatile chlorinated hydrocarbons in heat-activated persulfate oxidative degradation of soil[J]. Journal of Jilin University (Earth Science Edition), 2018,48(4):1212-1220.
|
[3] |
陆强,李辉,林匡飞,等.上海浦东某氯代烃场地地下水污染现状调查[J]. 环境科学学报, 2016,36(5):1730-1737. Lu Q, Li H, Lin K F, et al. Investigation on groundwater pollution at a chlorinated hydrocarbon site in Pudong, Shanghai[J]. Journal of Environmental Science, 2016,36(5):1730-1737.
|
[4] |
Xiao Z, Jiang W, Chen D, et al. Bioremediation of typical chlorinated hydrocarbons by microbial reductive dechlorination and its key players:A review[J]. Ecotoxicology and Environmental Safety, 2020,202:110925.
|
[5] |
Engelmann C, Händel F, Binder M, et al. The fate of DNAPL contaminants in non-consolidated subsurface systems-Discussion on the relevance of effective source zone geometries for plume propagation[J]. Journal of Hazardous Materials, 2019,375:233-240.
|
[6] |
Jiang X, Lu W, Hou Z, et al. Ensemble of surrogates-based optimization for identifying an optimal surfactant-enhanced aquifer remediation strategy at heterogeneous DNAPL-contaminated sites[J]. Computers and Geosciences, 2015,84:37-45.
|
[7] |
伍斌,杨宾,李慧颖,等.表面活性剂强化抽出处理含水层中DNAPL污染物的去除特征[J]. 环境工程学报, 2014,8(5):1956-1964. Wu B, Yang B, Li H Y, et al. Removal characteristics of DNAPL pollutants in aquifers treated by surfactant enhanced extraction[J]. Chinese Journal of Environmental Engineering, 2014,8(5):1956-1964.
|
[8] |
任加国,郜普闯,徐祥健,等.地下水氯代烃污染修复技术研究进展[J]. 环境科学研究, 2021,34(7):1641-1653. Ren J G, Gao P C, Xu X J, et al. Research progress on groundwater chlorinated hydrocarbon pollution remediation technology[J]. Research of Environmental Sciences, 2021,34(7):1641-1653.
|
[9] |
董雯娟,赵保卫,蒋兵,等.阴-非混合表面活性剂对DNAPLs的增溶作用[J]. 安全与环境学报, 2007,(2):24-28. Dong W J, Zhao B W, Jiang B, et al. Solubilization of DNAPLs by yin-unmixed surfactants[J]. Journal of Safety and Environment, 2007, (2):24-28.
|
[10] |
赵筱茜,王聪,田勇,等.微乳液法制备介孔碳材料[J]. 化学进展, 2022,34(10):2316-2328. Zhao X Q, Wang C, Tian Y, et al. Preparation of mesoporous carbon materials by microemulsion[J]. Progress in Chemistry, 2022,34(10):2316-2328.
|
[11] |
毛雪彬,杜志平,台秀梅,等.微乳液的理论及应用研究进展[J]. 日用化学工业, 2016,46(11):648-653,660. Mao X B, Du Z P, Tai X M, et al. Research progress on theory and application of microemulsions[J]. China Surfactant and Cosmetics, 2016,46(11):648-653,660.
|
[12] |
耿向飞,丁彬,管保山,等.微乳液技术在储层改造中的应用研究进展[J]. 精细石油化工, 2022,39(2):74-77. Geng X F, Ding B, Guan B S, et al. Research progress on application of microemulsion technology in reservoir transformation[J]. Fine Petrochemical Industry, 2022,39(2):74-77.
|
[13] |
崔乐雨,李应成,何秀娟,等.微乳液泡沫驱油技术原理、挑战和研究进展[J]. 精细化工, 2022,39(1):56-64. Cui L Y, Li Y C, He X J, et al. Principles, challenges and research progress of microemulsion foam oil displacement technology[J]. Fine Chemicals, 2022,39(1):56-64.
|
[14] |
Abruzzo A, Parolin C, Rossi M, et al. Development and Characterization of Azithromycin-Loaded Microemulsions:A Promising Tool for the Treatment of Bacterial Skin Infections[J]. Antibiotics, 2022,11(8):1040.
|
[15] |
闫文佳,贾鑫,颜金鑫,等.微乳液凝胶颗粒制备及其应用研究进展[J]. 食品工业科技, 2021,42(15):383-388. Yan W J, Jia X, Yan J X, et al. Research progress on preparation and application of microemulsion gel granules[J]. Science and Technology of Food Industry, 2021,42(15):383-388.
|
[16] |
赵保卫,朱利中.微乳液对难溶有机物的增溶作用及影响因素[J]. 中国环境科学, 2003,23(5):5. Zhao B W, Zhu L Z. Solubilization effect and influencing factors of microemulsion on poorly soluble organic compounds[J]. China Environmental Science, 2003,23(5):5.
|
[17] |
袁影影,李晓军,贾春云,等.生物柴油基微乳液的制备及其对钢铁厂多环芳烃污染土壤的修复性能[J]. 环境工程学报, 2020,14(12):3505-3514. Yuan Y Y, Li X J, Jia C Y, et al. Preparation of biodiesel-based microemulsion and its remediation performance on polycyclic aromatic hydrocarbon-contaminated soil in iron and steel plant[J]. Chinese Journal of Environmental Engineering, 2020,14(12):3505-3514.
|
[18] |
侯宁.咪唑型表面活性剂复配微乳液体系增溶卤代烃的性能及相行为的研究[D]. 山东师范大学, 2016. Hou N. Study on the performance and phase behavior of solubilized halogenated hydrocarbons in imidazole-type surfactant compound microemulsion system[D]. Shandong Normal University, 2016.
|
[19] |
张瀚元,鹿豪杰,任黎明,等.不同油相微乳液性质及其增溶菲的性能研究[J]. 中国环境科学, 2019,39(10):4296-4302. Zhang H Y, Lu H J, Ren L M, et al. Properties of different oil-phase microemulsions and their properties of solubilized phenanthrene[J]. China Environmental Science, 2019,39(10):4296-4302.
|
[20] |
赵保卫,朱利中.蓖麻油衍生微乳液对菲的增溶和洗脱作用及其对菲污染土壤的修复机理[J]. 环境工程学报, 2007,1(2):130-134. Zhao B W, Zhu L Z. Solubilization and elution of phenanthrene by castor oil-derived microemulsion and its remediation mechanism on phenanthrene contaminated soil[J]. Chinese Journal of Environmental Engineering, 2007,1(2):130-134.
|
[21] |
Fu Y, Qin C, Gao S, et al. Aquifer flushing using a SDS/1-butanol based in-situ microemulsion:Performance and mechanism for the remediation of nitrobenzene contamination[J]. Journal of Hazardous Materials, 2022,424:127409.
|
[22] |
张婧懿,付玉丰,姚禹,等.Brij35构筑原位微乳液对四氯乙烯的增溶及脱附效果[J]. 中国环境科学, 2021,41(5):2203-2210. Zhang J Y, Fu Y F, Yao Y, et al. Solubilization and desorption effects of Brij35 constructed in situ microemulsion on tetrachloroethylene[J]. China Environmental Science, 2021,41(5):2203-2210.
|
[23] |
Mo Y, Dong J, Li Y, et al. Formation of in-situ microemulsion and its efficiency for residual PCE removal in low temperature aquifers[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2023,656:130461.
|
[24] |
宋易南,侯德义,赵勇胜,等.京津冀化工场地地下水污染修复治理对策研究[J]. 环境科学研究, 2020,33(6):1345-1356. Song Y D, Hou D Y, Zhao Y S, et al. Remediation strategies for contaminated groundwater at chemical industrial sites in the Beijing-Tianjin-Hebei region[J]. Research of Environmental Sciences, 2020, 33(6):1345-1356.
|
[25] |
于淇.某化工厂地下水挥发性卤代烃在地下水中的污染迁移研究[D]. 济南:济南大学, 2017. Yu Q. Study on pollution migration of groundwater volatile halogenated hydrocarbons in groundwater in a chemical plant[D]. Jinan:University of Jinan, 2017.
|
[26] |
Talawat J, Sabatini D A, Tongcumpou C. Behavior of DNAPL mixture of organometallic and chlorinated solvent in the presence of surfactants and alcohols as density modifying agents[J]. Journal of Environmental Science and Health, Part A, 2013,48(13):1619-1627.
|
[27] |
Jayanti S, Britton L N, Dwarakanath V, et al. Laboratory evaluation of custom-designed surfactants to remediate NAPL source zones[J]. Environmental Science and Technology, American Chemical Society, 2002,36(24):5491-5497.
|
[28] |
吴章辉,马雁冰,刘会娥,等.微乳液最佳中相醇用量和增溶能力与油相等效烷基碳数的定量关系[J]. 化工学报, 2016,67(4):1399-1404. Wu Z H, Ma Y B, Liu H E, et al. Correlations between alcohol content or solubilization parameter and equivalent alkane carbon number of oil mixtures for optimum middle phase microemulsions[J]. CIESC Journal, 2016,67(4):1399-1404.
|
[29] |
张瀚元,鹿豪杰,任黎明,等.不同油相微乳液性质及其增溶菲的性能研究[J]. 中国环境科学, 2019,39(10):4296-4302. Zhang H, Lu H, Ren L, et al. Properties of microemulsions with different oil phase and their solubilization capacities for phenanthrene[J]. China Environmental Science, 2019,39(10):4296-4302.
|
[30] |
Szekeres E, Acosta E, Sabatini D A, et al. A two-state model for selective solubilization of benzene−limonene mixtures in sodium dihexyl sulfosuccinate microemulsions[J]. Langmuir, 2004,20(16):6560-6569.
|
[31] |
Liu W, Chai J L, Chen L S, et al. Effect of the composition of mixed oils on the phase behavior and solubilization ability of microemulsion systems[J]. Journal of Chemical and Engineering Data, 2012,57(2):469-474.
|
[32] |
Intiso A, Miele Y, Marchettini N, et al. Enhanced solubility of trichloroethylene (TCE) by a poly-oxyethylene alcohol as green surfactant[J]. Environmental Technology and Innovation, 2018,12:72-79.
|
|
|
|