|
|
Effects of attapulgite-based composites on soil improvement——Take desert-oasis farmland soil as an example |
FENG Zhi-zhen1,2, YAN Hong1,2, LU Yu-xin1,2, XU Qian1,2, BAI Ya-ni1,2, ZHAO Wen-juan1,2 |
1. Bio-Agriculture Institute of Shaanxi, Xi'an 710043, China; 2. Enzyme Engineering Research Center of Shaanxi Province, Xi'an 710600, China |
|
|
Abstract Effects of attapulgite/biochar composite and its individual component on soil aggregate and corn (Zea mays L.) yields at different application levels were studied in desert-oasis farmland soil in Linze County, middle reaches of Heihe River. Results showed that the composite reduced the gravel particles (>1mm), coarse sand particles (1~0.25mm), fine sand particles (0.25~0.1mm), and grade fine sand particles (0.1~0.05mm), while increasing the coarse silt particles (0.05~0.02mm), fine silt particles (0.02~0.002mm) and clay particles (<0.002mm). The soil aggregate content of >2mm and the average weight diameter (MWD) were gradually increased with an increase in the application dosage of composite. When the application dosage of composite reached a high level(12t/hm2), the MWD reached the maximum of 6.24mm, which increased 49.6% comparing to the control treatments. With the increasing application dosage of composite, corn yields firstly increased and then decreased. When medium application dosage was applied(8t/hm2), the yield reached 18352kg/hm2, increased 56.9% comparing with the control treatment. To conclude, the attapulgite/biochar composite promoted the formation of soil aggregate structure by regulating soil particle distribution, and further improved soil structure and physicochemical properties. On the other hand, the nutrients of the composite affected the soil chemical properties. The corn yields were increased by the change of soil physicochemical properties after applying attapulgite/biochar composite. The composite had greater effect than individual in improvement of farmland soil in desert-oasis, had better development and utilization value.
|
Received: 18 April 2023
|
|
|
|
|
[1] |
王文波,牟斌,张俊平,等.凹凸棒石:从矿物材料到功能材料[J]. 中国科学:化学, 2018,48(12):1432-1451. Wang W B, Mu B, Zhang J P, et al. Attapulgite:from clay minerals to functional materials[J]. Scientia Sinica Chimica, 2018,48(12):1432-1451.
|
[2] |
Lam Y Y, Lau S S S, Wong J W C. Removal of Cd(II) from aqueous solutions using plant-derived biochar:Kinetics, isotherm and characterization[J]. Bioresource Technology Reports, 2019,8:100323.
|
[3] |
Zhou H, Fang H, Zhang Q, et al. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam[J]. European Journal of Soil Science, 2019,70:291-300.
|
[4] |
武爱莲,王劲松,董二伟,等.施用生物炭和秸秆对石灰性褐土氮肥去向的影响[J]. 土壤学报, 2019,56(1):176-185. Wu A L, Wang J S, Dong E W, et al. Effect of application of biochar and straw on fate of fertilizer N in cinnamon soil[J]. Acta Pedologica Sinica, 2019,56(1):176-185.
|
[5] |
李明,秦洁,红雨,等.氮素添加对贝加尔针茅草原土壤团聚体碳、氮和磷生态化学计量学特征的影响[J]. 草业学报, 2019,28(12):29-40. Li M, Qin J, Hong Y, et al. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates[J]. Acta Prataculturae Sinica, 2019,28(12):29-40.
|
[6] |
刘亚龙,王萍,汪景宽.土壤团聚体的形成和稳定机制:研究进展与展望[J]. 土壤学报, 2023,60(3):627-643. Liu Y L, Wang P, Wang J K. Formation and stability mechanism of soil aggregates:Progress and prospect[J]. Acta Pedologica Sinica, 2023,60(3):627-643.
|
[7] |
Six J, Elliott E T, Paustian K. Soil macroaggregate turnover and microaggregate formation:A mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology and Biochemistry, 2000,32(14):2099-2103.
|
[8] |
陈帅,孙涛.松嫩草地不同退化阶段的土壤团聚体稳定性[J]. 草业学报, 2017,34(2):217-223. Chen S, Sun T. Research of soil aggregate stability in the different degradation stages of Songnen grassland[J]. Acta Prataculturae Sinica, 2017,34(2):217-223.
|
[9] |
杨苏,李传哲,徐聪,等.绿肥和凹凸棒添加对黄河故道潮土土壤结构和碳氮含量的影响[J]. 水土保持通报, 2020,40(2):199-204. Yang S, Li C Z, Xu C, et al. Effects of adding straw and attapulgite on soil structure and carbon and nitrogen contents of Old Yellow River Course[J]. Bulletin of Soil and Water Conservation, 2020,40(2):199-204.
|
[10] |
张贺,杨静,周吉祥,等.连续施用土壤改良剂对砂质潮土团聚体及作物产量的影响[J]. 植物营养与肥料学报, 2021,27(5):791-801. Zhang H, Yang J, Zhou J X, et al. Effects of organic and inorganic amendments on aggregation and crop yields in sandy fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizers, 2021,27(5):791-801.
|
[11] |
Zheng H, Wang X, Luo X, et al. Biochar-induced negative carbon mineralization priming effects in a coastal wetland soil:Roles of soil aggregation and microbial modulation[J]. Science of the Total Environment, 2018,610:951-960.
|
[12] |
张帅.生物炭施用对潮土团聚体碳氮及微生物特性的影响[D]. 北京:中国农业科学院, 2021. Zhang S. Effect of biochar application on carbon, nitrogen and microbial characteristics within aggregates of fluvo-aquic soil[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021.
|
[13] |
Obia A, Mulder J, Martinsn V, et al. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils[J]. Soil and Tillage Research, 2016,155:35-44.
|
[14] |
郭淼,李贝贝,许琳玥,等.氢氧化钠改性生物炭/凹凸棒石复合材料对铅、镉的吸附机理研究[J]. 生态与农村环境学报, https://doi.org/10.19741/j.issn.1673-4831.2022.0851. Guo M, Li B B, Xu L Y, et al. Study on the adsorption mechanism of sodium hydroxide modified biochar/attapulgite composites for lead and cadmium[J]. Journal of Ecology and Rural Environment, https://doi.org/10.19741/j.issn.1673-4831.2022.0851.
|
[15] |
陶玲,黄磊,周怡蕾,等.污泥-凹凸棒石共热解生物炭对矿区土壤重金属生物有效性和环境风险的影响[J]. 生态环境学报, 2022,31(8):1637-1646. Tao L, Huang L, Zhou Y L, et al. Influences of biochar prepared by co-pyrolysis with sludge and attapulgite on bioavailability and environmental risk of heavy metals in mining soil[J]. Ecology and Environmental Sciences, 2022,31(8):1637-1646.
|
[16] |
Tian G Y, Wang W B, Zhu Y F, et al. Carbon/attapulgite composites as recycled palm oil-decoloring and dye adsorbents[J]. Materials, 2018, 11(1):86.
|
[17] |
Tang J, Zong L, Mu B, et al. Preparation and cyclic utilization assessment of palygorskite/carbon composites for sustainable efficient removal of methyl violet[J]. Applied Clay Science, 2018,161:317-325.
|
[18] |
Tang J, Zong L, Mu B, et al. Attapulgite/carbon composites as a recyclable adsorbent for antibiotics removal[J]. Korean J. Chem. Eng., 2018,35(8),1650-1661.
|
[19] |
郝丽娜,粟晓玲.黑河干流中游地区适宜绿洲及耕地规模确定[J]. 农业工程学报, 2015,31(10):262-268. Hao L N, Su X L. Determination for suitable scale of oasis and cultivated land in middle reaches of Heihe River basin[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(10):262-268.
|
[20] |
宗莉,唐洁,牟斌,等.凹凸棒石/炭复合吸附材料研究进展[J]. 化工进展, 2021,40(1):282-296. Zong L, Tang J, Mu B, et al. Research progress on attapulgite/carbon composites used as adsorbent[J]. Chemical Industry and Engineering Progress, 2021,40(1):282-296.
|
[21] |
李贝贝,张亚平,郭炳跃,等,生物炭/凹凸棒石复合材料对铅镉的吸附[J]. 农业环境科学学报, 2023,42(5):1116-1127. Li B B, Zhang Y P, Guo B Y, et al. Adsorption characteristics of Cd2+ and Pb2+ on biochar/attapulgite composites[J]. Journal of Agro-Environment Science, 2023,42(5):1116-1127.
|
[22] |
王彤彤,崔庆亮,王丽丽,等.Al改性柠条生物炭对P的吸附特性及其机制[J]. 中国环境科学, 2018,38(6):2210-2222. Wang T T, Cui Q L, Wang L L, et al. Adsorption characteristics and mechanism of phosphate from aqueous solutions on Al modification biochar produced from Caragana Korshinskii[J]. China Environmental Science, 2018,38(6):2210-2222.
|
[23] |
王彤彤,马江波,曲东,等.两种木材生物炭对铜离子的吸附特性及其机理研究[J]. 环境科学, 2017,38(5):2161-2171. Wang T T, Ma J B, Qu D, et al. Characteristics and mechanism of copper adsorption from aqueous solutions on biochar produced from sawdust and Apple branch[J]. Environmental Science, 2017,38(5):2161-2171.
|
[24] |
莫惠栋.农业试验统计(第二版)[M]. 上海:上海科技出版社, 1992:224-259. Mo H D. Agricultural trial statistics (2nd Edition)[M]. Shanghai:Shanghai Science and Technology Press, 1992:224-259.
|
[25] |
韩梅,刘蕊,李正鹏,等.种植绿肥对作物产量和细菌群落稳定性的影响[J]. 中国环境科学, 2021,41(11):5382-5390. Han M, Liu R, Li Z P, et al. Green manuring increased crop yields and the stability of bacterial community[J]. China Environmental Science, 2021,41(11):5382-5390.
|
[26] |
Liao H, Zhang Y, Wang K, et al. Complexity of bacterial and fungal network increases with soil aggregate size in an agricultural Inceptisol[J]. Applied Soil Ecology, 2020,154:103640.
|
[27] |
雷泽勇,于东伟,周凤艳,等.樟子松人工林营建对土壤颗粒组成变化的影响[J]. 生态学报, 2020,40(15):5367-5376. Lei Z Y, Yu D W, Zhou F Y, et al. Effects of afforestation with Pinus sylvestris var. mongolica on change of soil particle size distribution in sandy land[J]. Acta Ecologica Sinica, 2020,40(15):5367-5376.
|
[28] |
鲁如坤.土壤农业化学分析方法[M]. 北京:中国农业科技出版社, 2000. Lu R K. Analytical methods for soil and agro-chemistry[M]. Beijing:China Agricultural Science and Technology Press, 2000.
|
[29] |
Yang W G, Han Y, Zheng F L, et al. Investigating spatial distribution of soil quality index and its impacts on corn yield in a cultivated catchment of the Chinese Mollisol Region[J]. Soil Science Society of America Journal, 2016,88:317-327.
|
[30] |
Pardo A, Amato M, Chiaranda FQ. Relationships between soil structure, root distribution and water uptake of chickpea (Cicerarietinum L.) Plant Growth and Water Distribution[J]. European Journal of Agronomy, 2000,13:39-45.
|
[31] |
Lal R, Shukla M K. Principles of Soil Physics[M]. New York:Academic, Marcel Dekker, Inc. 2004:12-256.
|
[32] |
Su Y Z, Zhao H L, Zhao W Z, et al. Fractal features of soil particle size distribution and the implication for indicting desertification[J]. Geoderma, 2004,122:43-49.
|
[33] |
苏永中,杨晓,杨荣.黑河中游边缘荒漠-绿洲非饱和带土壤质地对土壤氮积累与地下水氮污染的影响[J]. 环境科学, 2014,35(10):3683-3691. Su Y Z, Yang X, Yang R. Effect of soil texture in unsaturated zone on soil nitrate accumulation and groundwater nitrate contamination in a marginal oasis in the middle of Heihe River Rasin[J]. Environmental Science, 2014,35(10):3683-3691.
|
[34] |
李晶,何志斌,王建兵,等.荒漠绿洲农田土壤水热动态及硝态氮淋溶特征[J]. 中国沙漠, 2022,42(5):245-257. Li J, He Z B, Wang J B, et al. Soil hydrothermal dynamics and nitrate leaching characteristics in farmland in desert oasis[J]. Journal of Desert Research, 2022,42(5):245-257.
|
[35] |
刘玲玲,李超,房焕,等.免耕对稻油轮作系统土壤结构的影响[J]. 土壤学报, 2021,58(2):412-420. Liu L L, Li C, Fang H, et al. Effect of no-till farming on soil structure in rice-rapeseed rotation system[J]. Acta Pedologica Sinica, 2021, 58(2):412-420.
|
[36] |
夏围围,李乙坤,张萌,等.硝化微生物在土壤团聚体中的分布及其对种植方式的响应[J]. 土壤学报, 2022.DOI:10.11766/trxb202203220126. Xia W W, Li Y K, Zhang M, et al. Distribution patterns of nitrifiers within soil aggregates under different cropping systems[J]. Acta Pedologica Sinica, 2022.DOI:10.11766/trxb202203220126.
|
[37] |
杨婷,吴军虎.凹凸棒土对土壤团粒结构及水力参数的影响[J]. 干旱地区农业研究, 2017,35(6):46-51. Yang T, Wu J H. Effect of attapulgite to soil aggregate structure and hydraulic parameters[J]. Agricultural Research in the Arid Areas, 2017,35(6):46-51.
|
[38] |
Zeelie A. Effect of biochar on selected soil physical properties of sandy soil with low agricultural suitability[D]. Stellenbosch:Stellenbosch University, 2012.
|
[39] |
惠超,杨卫君,宋世龙,等.生物炭施用对麦田土壤团聚体机械稳定性及春小麦产量的影响[J]. 土壤通报, 2022,53(2):349-355. Hui C, Yang W J, Song S L, et al. Effects of biochar application on mechanical stability of soil aggregates and yield of spring wheat[J]. Chinese Journal of Soil Science, 2022,53(2):349-355.
|
[40] |
纪立东,柳骁桐,司海丽,等.生物炭对土壤理化性质和玉米生长的影响[J]. 干旱地区农业研究, 2021,39(5):114-120. Ji L D, Liu X T, Si H L. et al. Effects of biomass charcoal on soil physicochemical properties and corn growth[J]. Agricultural Research in the Arid Areas, 2021,39(5):114-120.
|
[41] |
谢坤,耿明建,聂军,等.长期紫云英还田与化肥配施下水稻土团聚体中铁氧化物的演变规律[J]. 土壤学报, 2022.DOI:10.11766/trxb202111110611. Xie K, Geng M J, Nie J, et al. Evolution of iron oxides in aggregates of paddy soil under long-term returning of Chinese Milk Vetch and combined application of chemical fertilizers[J]. Acta Pedologica Sinica, 2022.DOI:10.11766/trxb202111110611.
|
[42] |
陈温福,张伟明,孟军.农用生物炭研究进展与前景[J]. 中国农业科学, 2013,46(16):3324-3333. Chen W F, Zhang W M, Meng J. Advances and prospects in research of biochar utilization in agriculture[J]. Scientia Agricultura Sinica, 2013,46(16):3324-3333.
|
[43] |
Zhao X, Wang J W, Xu H J, et al. Effects of crop-straw biochar on crop growth and soil fertility over a wheat/millet rotation in soils of China[J]. Soil Use and Management, 2014,30(3):311-319.
|
[44] |
李一凡,郭嘉朋,黄洁,等.不同老化方法对生物炭表面特征及镉吸附能力的影响[J]. 农业工程学报, 2023,39(11):238-244. Li Y F, Guo J M, Huang J, et al. Effects of aging methods on surface characteristics and cadmium adsorption in biochar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023,39(11):238-244.
|
[45] |
李阳,黄梅,沈飞,等.生物炭早期植物毒性评估培养方法研究[J]. 生态毒理学报, 2016,11(4):168-175. Li Y, Huang M, Shen F, et al. Investigations on cultivation methods for assessing the early phytotoxicity of biochar[J]. Asian Journal of Ecotoxicology, 2016,11(4):168-175.
|
[46] |
Uzoma K C, Inoue M, Andry H, et al. Effect of cow manure biochar on maize productivity under sandy soil condition[J]. Soil Use and Management, 2011,27(2):205-212.
|
[47] |
张晗芝,黄云,刘钢,等.生物炭对玉米苗期生长、养分吸收及土壤化学性状的影响[J]. 生态环境学报, 2010,19(11):2713-2717. Zhang H Z, Huang Y, Liu G, et al. Effects of biochar on corn growth, nutrient uptake and soil chemical properties in seeding stage[J]. Ecology and Environmental Sciences, 2010,19(11):2713-2717.
|
[48] |
李涵韬,余健,方凤满,等.复垦对土壤颗粒组成、分形维数、团聚体影响[J]. 环境科学与技术, 2015,38(8):11-21. Li H T, Yu J, Fang F M, et al. Soil particle size distribution, fractal dimension, soil aggregate feature and change after land leveling reclamation[J]. Environmental Science & Technology, 2015,38(8):11-21.
|
[49] |
Wang H F, Hu W Y, Wu Q M, et al. Effectiveness evaluation of environmentally friendly stabilizers on remediation of Cd and Pb in agricultural soils by multi-scale experiments[J]. Journal of Cleaner Production, 2021,311:127673. 致谢:本实验于中国科学院生态系统研究网络临泽内陆河流域综合研究站完成,在此表示感谢.
|
|
|
|