|
|
Environmental footprint analysis of ectopic soil remediation based on SEFA method: A case study of a steel plant |
SANG Chun-hui1, YANG Xin-tong2, LI Xiang-lan1, ZHANG Hong-zhen2 |
1. College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China; 2. Center for Soil Protection and landscape Design, Chinese Academy of Environmental Planning, Beijing 100012, China |
|
|
Abstract A study was conducted to analyze environmental footprints of heterotopic combination remediation schemes using SEFA (Spreadsheets for Environmental Footprint Analysis, EPA, version 3.0) algorithm at a steel contaminated site in Hefei, Anhui Province. Three schemes were included:(1) soil leaching + chemical oxidation + co-combustion in cement kiln, (2) stabilization + chemical oxidation + thermal desorption + remote landfill, (3) biodegradation + stabilization. Results showed significant differences in environmental footprints among the three remediation schemes. In terms of the green and sustainable restoration (GSR) elements, Scheme 3 yielded the smallest environmental footprint, i.e., energy consumption of 21808×104MJ and air pollution of 17,300tCO2 e. The overall environmental footprint of remediation of 1m3 of organic contaminated soil followed an order of chemical oxidation < biodegradation < thermal desorption, showing greenhouse gas emission as 0.05, 0.09 and 0.17tCO2 e/m3, and energy consumption as 949.55, 1677.54, 3049.11MJ/m3, respectively. For remediation of heavy metal contaminated soil, landfill caused the smallest environmental footprint in terms of energy consumption and greenhouse gases emissions. Regarding air pollutant emissions, stabilization remediation technology led to the smallest environmental footprint.
|
Received: 27 February 2023
|
|
|
|
|
[1] |
薛成杰,方战强.土壤修复产业碳达峰碳中和路径研究[J]. 环境工程, 2022,40(8):231-238. Xue C J, Fang Z Q. Path of carbon emission peaking and carbon neutrality in soil remediation industry[J]. Environmental Engineering, 2022,40(8):231-238.
|
[2] |
刘文晓,夏天翔,张丽娜,等.基于修复效果的污染土壤修复工程环境足迹分析[J]. 环境科学研究, 2022,35(10):2367-2377. Liu W X, Xia T X, Zhang L N, et al. Environmental footprint analysis of contaminated soil remediation projects based on remediation effects[J]. Research of Environmental Sciences, 2022,35(10):2367-2377.
|
[3] |
沈妹娜.钢铁冶金行业节能与环保分析[J]. 资源节约与环保, 2015(12):12.DOI:10.16317/j.cnki.12-1377/x.2015.12.011. Shen M N. Analysis of energy saving and environmental protection in iron and steel metallurgy industry[J]. Resources Economization & Environmental Protection, 2015(12):12.DOI:10.16317/j.cnki.12-1377/x.2015.12.011.
|
[4] |
ITRC. Green and sustainable remediation:State of the science and practice. USA, 2011.
|
[5] |
Mueller D. Green remediation[J]. The Magazine for Environmental Managers, 2009,(10):54-55.
|
[6] |
侯德义,李广贺.污染土壤绿色可持续修复的内涵与发展方向分析[J]. 环境保护, 2016,44(20):16-19. Hou D Y, Li G H. Green and sustainable remediation of contaminated soil in China:Core elements and development direction[J]. Environmental Protection, 2016,44(20):16-19.
|
[7] |
Smith N W J. Debunking myths about sustainable remediation[J]. Remediation Journal, 2019,29(2).
|
[8] |
李青青,罗启仕,郑伟,等.土壤修复技术的可持续性评价——以原位稳定/固化技术和异位填埋技术为例[J]. 土壤, 2009,41(2):308-314. Li Q Q, Luo Q S, Zheng W, et al. Assessment of technical sustainability of soil remediation——A case study of in situ solidification/stabilization and off site landfill[J]. Soils, 2009, 41(2):308-314.
|
[9] |
杨宗帅,魏昌龙,宋昕,等.生命周期评价研究及其在我国土壤修复领域的应用进展[J/OL]. 土壤通报, 1-12[2023-02-26].DOI:10.19336/j.cnki.trtb.2022040808. Yang Z S, Wei C L, Song X, et al. Development of Life Cycle Assessment and Its Applications in Soil Remediation in China[J/OL]. Chinese Journal of Soil Science, 1-12[2023-02-26].DOI:10.19336/j.cnki.trtb.2022040808.
|
[10] |
Morais A S, Delerue-Matos C. A perspective on LCA application in site remediation services:Critical review of challenges[J]. Journal of Hazardous Materials, 2009,175(1).
|
[11] |
Favara P J, Krieger T M, Boughton B, et al. Guidance for performing footprint analyses and life-cycle assessments for the remediation industry[J]. Remediation Journal, 2011,21(3):39-79.
|
[12] |
Ali A M K, Zakria Q, Muhammad A, et al. Environmental footprint assessment of a cleanup at hypothetical contaminated site[J]. Applied Sciences, 2021,11(11):4907.doi.org/10.3390/app11114907.
|
[13] |
Yasutaka T, Zhang H, Murayama K, et al. Development of a green remediation tool in Japan[J]. Science of the Total Environment, 2016,doi:10.1016/j.scitotenv.2016.01.018.
|
[14] |
Huang W, Hung W, Vu T C, et al. Green and sustainable remediation (GSR) evaluation:framework, standards, and tool. A case study in Taiwan[J]. Environmental science and pollution research international, 2016,23(21):21712-21725.
|
[15] |
孟祥帅,陈鸿汉,何亚平,等.污染场地修复技术方案筛选中环境指标建立初探:以某废弃焦化厂为例[J]. 环境工程, 2021,39(2):153-159. Meng X S, Chen H H, He Y P, et al. Establishment of the environmental indexes in selection of remediation schemes:A case study of an abandoned coking site[J]. Environmental Engineering, 2021,39(2):153-159.
|
[16] |
Tomoyuki M, Takashi K, Hiroyuki T, et al. Remediation of cadmium-contaminated paddy soils by washing with calcium chloride:Verification of on-site washing[J]. Environmental pollution (Barking, Essex:1987), 2007,147(1):112-119.
|
[17] |
Volchko Y, Norrman J, Rosén L, et al. Using soil function evaluation in multi-criteria decision analysis for sustainability appraisal of remediation alternatives[J]. Science of The Total Environment, 2014, (485/486):785-791.
|
[18] |
Divya P, Madhoolika A, Shanker J P. Carbon footprint:current methods of estimation[J]. Environmental monitoring and assessment, 2011,178(1-4).
|
[19] |
黄萍,廖祖文,张林鹏,等.高速公路服务区碳足迹分析——以江西省某高速公路服务区为例[J]. 能源研究与管理, 2021,47(2):1-4,9. Huang P, Liao Z W, Zhang L P, et al. Carbon footprint analysis of highway service area——Take a highway service area in Jiangxi Province as an example[J]. Energy Research and Management, 2021, 47(2):1-4,9.
|
[20] |
刘爽,陈盼,宋慧敏,等.我国华东地区污染土壤异位热脱附修复碳排放及减排策略[J]. 环境工程学报, 2022,16(8):2663-2671. Liu S, Chen P, Song H M, et al. Carbon emissions and emission reduction strategy for remediation of contaminated soil by ex-situ thermal desorption in East China[J]. Chinese Journal of Environmental Engineering, 2022,16(8):2663-2671.
|
[21] |
Kingston J T, Dahlen P R, Johnson P C, et al. Critical evaluation of state-of-the-art in situ thermal treatment technologies for DNAPL source zone treatment[R]. Arlington:Defense Technical Information Center, 2010.
|
[22] |
Oleksandrenko A. A low impact technology chemical oxidation, bioremediation and groundwater reinjection analysed with Site Wise TM and SEFA[R]. 2018
|
[23] |
Kalomoiri A, Braida W. Promoting decision making through a Sustainable Remediation Assessment Matrix (SRAM)[J]. International Journal of Innovation and Sustainable Development, 2013,7(3):252.
|
[24] |
安徽省统计局.2021年我省电力运行稳中向好[EB/OL]. http://tjj.ah.gov.cn/public/6981/146440421.html,2022-01-29/2023-02-03. Anhui provincial Bureau of Statistics. In 2021, our province's electric power operation is stable and good[EB/OL]. http://tjj.ah.gov.cn/public/6981/146440421.html, 2022-01-29/2023-02-03.
|
|
|
|