|
|
Impacts of human activities on net nitrogen input under different ecological type zones—A case study in agricultural-pastoral ecotone of Northern China |
LIU Huan1, LEI Qiu-liang1, DU Xin-zhong1, AN Miao-ying1, LIU Xiao-tong2, QIU Wei-wen3, WU Shu-xia1, LIU-Hong-bin1 |
1. Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China; 3. The New Zealand Institute for Plant & Food Research Limited, Chrischurch City, 7608, New Zealand |
|
|
Abstract This study aimed to investigate the impacts of human activities on net Nitrogen (N) input under different ecological type zones of the agricultural-pastoral ecotone in Northern China. Based on Net Anthropogenic Nitrogen Input (NANI) model, statistical data and relevant parameters collected from 7 provinces and 23 prefecture-level cities within the agricultural-pastoral ecotone were analyzed to determine the spatiotemporal distribution characteristics and influencing factors of NANI from 1985 to 2020. The results showed that the trend of NANI in the region initially increased and then declined from 1985 to 2020, and Hebei Province contributed the highest to the NANI value. The NANI trends in the hilly and gully erosion area of Loess Plateau and the northern agricultural-pastoral ecotone inter-annual were similar, while the NANI values in the water source conservation zone of Beijing-Tianjin-Hebei region and the soil desertification and degradation area along the Great Wall appeared to show an upward trend. The overall spatial distribution of NANI values presented a gradually decreasing characteristic from northwest to southeast. In terms of input components, the largest contribution source in the entire study area was N fertilizer use (30.34%~56.29%), followed by atmospheric N deposition (31.20%~47.23%). The key input components in the hilly and gully erosion area of Loess Plateau were N fertilizer application and food/livestock feed N input (accumulating to 76.46%~85.14%). The two factors that had the greatest effect on NANI values in the northern farming-pastoral ecotone were population density and the quantity of livestock and poultry. Therefore, farming systems restructuring in the agricultural-pastoral ecotone of Northern China should integrate with zoning governance strategy, adjusting N fertilizer use schemes, livestock and poultry breeding modes to promote the deep consolidation between regional agriculture and the ecological environment.
|
Received: 01 March 2023
|
|
|
|
|
[1] |
Howarth R, Chan F, Conley D J, et al. Coupled biogeochemical cycles:eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems[J]. Frontiers in Ecology & the Environment, 2011,9(1):18-26.
|
[2] |
Howarth R W. Coastal nitrogen pollution:A review of sources and trends globally and regionally[J]. Harmful Algae., 2009,8(1):14-20.
|
[3] |
高伟,郭怀成,后希康.中国大陆市域人类活动净氮输入量(NANI)评估[J]. 北京大学学报(自然科学版), 2014,50(5):951-959. Gao W, Guo H C, Hou X K. Evaluating city-scale net anthropogenic nitrogen input (NANI) in Mainland China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2014,50(5):951-959.
|
[4] |
李文龙,石育中,鲁大铭,等.北方农牧交错带干旱脆弱性时空格局演变[J]. 自然资源学报, 2018,33(9):1599-1612. Li W L, Shi Y Z, LU D M, et al. Evolution of spatial and temporal patterns of drought vulnerability in the Northern Agro-Pastoral Transitional Zone[J]. Journal of Natural Resources, 2018,33(9):1599-1612.
|
[5] |
张建宁,陈璎亭,王勇,等.北方农牧交错带耕地利用变化对生态系统服务价值影响——以宁夏回族自治区吴忠市为例[J]. 水土保持研究, 2021,28(6):283-291. Zhang J N, Chen Y T, Wang Y, et al. Impact of cultivated land use change on ecosystem service value in the Northern Agro-Pastoral Transitional Zone[J]. Research of Soil and Water Conservation, 2021,28(6):283-291.
|
[6] |
张燕江,王俊鹏,王瑜,等.农牧交错带典型区土壤氮磷空间分布特征及其影响因素[J]. 环境科学, 2021,42(6):3010-3017. Zhang Y J, Wang J P, Wang Y, et al. Spatial patterns of nitrogen and phosphorus in soil and their influencing factors in a typical agro-pastoral ecotone[J]. China Environmental Science, 2021,42(6):3010-3017.
|
[7] |
陶泽涪,王世清,孙丕苓,等.中国北方农牧交错带耕地时空分异及驱动因素[J]. 干旱区地理, 2022,45(1):153-163. Tao Z P, Wang S Q, Sun P L, et al. Spatio-temporal differentiation and driving factors of cropland in the agro-pastoral transitional zone[J]. Arid Land Geography, 2022,45(1):153-163.
|
[8] |
李旭亮,杨礼箫,田伟,等.中国北方农牧交错带土地利用/覆盖变化研究综述[J]. 应用生态学报, 2018,29(10):3487-3495. Li X L, Wang S Q, Sun P L, et al. Land use and land cover change in agro-pastoral ecotone in Northern China:A review[J]. Chinese Journal of Applied Ecology, 2018,29(10):3487-3495.
|
[9] |
农业部发布《关于北方农牧交错带农业结构调整的指导意见》[J]. 北方牧业, 2016,(23):18. Ministry of Agriculture issues guidance on agricultural structural adjustment in the Northern Agricultural and Animal Husbandry Crossborder Zone[J]. Northern Pastoralism, 2016,(23):18.
|
[10] |
Howarth R W, Billen G, Swaney D, et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean:Natural and human influences[J]. Biogeochemistry, 1996, 35(1):75-139.
|
[11] |
Elizabeth W B I, Goodale C L, Jaworski N A, et al. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA[J]. Biogeochemistry, 2002,57(1):137-169.
|
[12] |
Sylvia C. Schaefer,James T. Hollibaugh,Merryl Alber. Watershed nitrogen input and riverine export on the west coast of the US[J]. Biogeochemistry, 2009,93(3):219-233..
|
[13] |
Hong B, Swaney D P, Mccrackin M, et al. Advances in NANI and NAPI accounting for the Baltic drainage basin:Spatial and temporal trends and relationships to watershed TN and TP fluxes[J]. Biogeochemistry, 2017,133(3):245-261.
|
[14] |
Swaney D P, Hong B, Selvam A P, et al. Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds:An initial assessment[J]. Journal of Marine Systems, 2015,141:45-58.
|
[15] |
Rock L, Mayer B. Nitrogen budget for the Oldman River Basin, southern Alberta, Canada[J]. Nutrient Cycling in Agroecosystems, 2006,75(1-3):147-162.
|
[16] |
王迪,刘梅冰.河流氮输出对人类活动净氮输入的响应[J]. 亚热带资源与环境学报, 2019,14(1):47-53. Wang D, Liu M B. Response of riverine nitrogen export to net anthropogenic nitrogen inputs[J]. Journal of Subtropical Resources and Environment, 2019,14(1):47-53.
|
[17] |
缪今典,张晓明,魏天兴,等.千岛湖流域杭州段人类活动净氮、净磷输入时空分布[J]. 中国环境科学, 2021,41(6):2831-2842. Miao J D, Zhang X M, Wei T X, et al. Temporal and spatial distribution characteristics of net nitrogen and phosphorus input from human activity:A case study of Hangzhou section of Qiandao Lake Basin.. China Environmental Science, 2021,41(6):2831-2842.
|
[18] |
李影,刘宏斌,雷秋良,等.洱海流域乡镇尺度上人类活动对净氮输入量的影响[J]. 环境科学, 2018,39(9):4189-4198. Li Y, Liu H B, Lei Q L, et al. Impact of human activities on net anthropogenic nitrogen inputs (NANI) at township scale in Erhai Lake basin[J]. Environment Science, 2018,39(9):4189-4198.
|
[19] |
张汪寿,李叙勇,杜新忠,等.流域人类活动净氮输入量的估算、不确定性及影响因素[J]. 生态学报, 2014,34(24):7454-7464. Zhang W S, Li X Y, Du X Z, et al. Accounting methods, uncertainties and influential factors of net anthropogenic nitrogen input (NANI)[J]. Acta Ecologica Sinica, 2014,34(24):7454-7464.
|
[20] |
张天鹏,雷秋良,秦丽欢,等.香溪河流域人类活动净磷输入量及其影响因素[J]. 中国环境科学, 2020,40(11):4957-4964. Zhang T P, Lei Q L, Qin L H, et al. Net phosphorus input from human activities and its influencing factors in Xiangxi River Watershed[J]. China Environmental Science, 2020,40(11):4957-4964.
|
[21] |
李晓虹,刘宏斌,雷秋良,等.人类活动净氮输入时空变化特征及其影响因素——以香溪河流域为例[J]. 中国环境科学, 2019,39(2):812-817. Li X H, Liu H B, Lei Q L, et al. Spatio-temporal characteristics and influential factors of net anthropogenic nitrogen input:A case study of Xiangxi River Watershed[J]. China Environmental Science, 2019, 39(2):812-817.
|
[22] |
翟凤英,何宇娜,王志宏,等.中国城乡居民膳食营养素摄入状况及变化趋势[J]. 营养学报, 2005,27(3):181-184. Zhai F Y, He Y N, Wang Z H, et al. The status and trends of dietarynutrients intake of Chinese population[J]. Acta Nutrimenta Sinica, 2005,27(3):181-184.
|
[23] |
裴玮,杜新忠,雷秋良,等.河南省人类活动净氮输入量与参数影响研究[J]. 中国环境科学, 2021,41(9):4447-4456. Pei W, Du X Z, Lei Q L, et al. Net anthropogenic nitrogen input from human activities and its impacts from parameters in Henan Province. China Environmental Science, 2021,41(9):4447-4456.
|
[24] |
Helen, M, Baulch. Asking the right questions about nutrient control in aquatic ecosystems[J]. Environmental Science & Technology, 2013,47(3).
|
[25] |
Sheng, W P, Yu,G R, et al. Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China[J]. Environmental monitoring and assessment, 2013,185(1):833-844.
|
[26] |
Zhan X, Yu G, et al. Inorganic nitrogen wet deposition:Evidence from the North-South Transect of Eastern China[J]. Environmental Pollution, 2015,204(204):1-8.
|
[27] |
Jia Y L, Yu G R, Gao Y N, et al. Global inorganic nitrogen dry deposition inferred from ground-and space-based measurements[J]. Scientific reports, 2016,6:19810.
|
[28] |
Zhu J X, He N P, et al. The composition, spatial patterns, and influencing factors of atmospheric wet nitrogen deposition in Chinese terrestrial ecosystems[J]. Science of The Total Environment, 2015, 511(511):777-785.
|
[29] |
Jia YL, Yu G, He NP, et al. Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity[J]. Scientific Reports, 2014,4:3763.
|
[30] |
畜禽粪污土地承载力测算技术指南[J]. 农技服务, 2018,35(5):33-36. Technical guidelines for measuring the land carrying capacity of livestock and poultry manure[J]. Agricultural services, 2018,35(5):33-36.
|
[31] |
马华,雷秋良,杜新忠,等.河南省人类活动净磷输入的时空变化与影响参数[J]. 中国环境科学, 2022,42(3):1318-1326. Ma H, Du X Z, Lei Q L, et al. Spatio-temporal variation and the impacts from parameters analysis of net anthropogenic phosphorus inputs in Henan province. China Environmental Science, 2022,42(3):1318-1326.
|
[32] |
Schaefer S C, Alber M. Temporal and spatial trends in nitrogen and phosphorus inputs to the watershed of the Altamaha River, Georgia, USA[J]. Biogeochemistry, 2007,86(3):231-249.
|
[33] |
高伟,白辉,严长安,等.1952~2016年长江经济带天然与人为氮输入时空演变趋势[J]. 环境科学学报, 2019,39(9):3134-3143. Gao W, Bai H, Yan C A, et al. Spatiotemporal evolution of natural and anthropogenic nitrogen inputs to Yangtze River Economic Belt from 1952 to 2016[J]. Acta Scientiae Circumstantiae, 2019,39(9):3134-3143.
|
[34] |
徐浩林,杨培岭,邢伟民,等.湖北省2008~2017年人类活动净氮输入状况[J]. 中国环境科学, 2020,40(9):4017-4028. Xu H L, Yang P L, Xing W M, et al. Net anthropogenic nitrogen accumulation in Hubei province from 2008 to 2017[J]. China Environmental Science, 2020,40(9):4017-4028.
|
[35] |
张柏发,陈丁江.1980~2010年浙江某典型河流硝态氮通量对净人类活动氮输入的动态响应[J]. 环境科学, 2014,35(8):2911-2919. Zhang B F, Chen D J. Dynamic response of riverine nitrate flux to net anthropogenic nitrogen inputs in a typical river in Zhejiang Province over the 1980~2010 period[J]. Environment Science, 2014,35(8):2911-2919.
|
[36] |
高伟,高波,严长安,等.鄱阳湖流域人为氮磷输入演变及湖泊水环境响应[J]. 环境科学学报, 2016,36(9):3137-3145. Gao W, Gao B, Yan C A, et al. Evolution of anthropogenic nitrogen and phosphorus inputs to Lake Poyang Basin and its' effect on water quality of lake[J]. Acta Scientiae Circumstantiae, 2016,36(9):3137-3145.
|
[37] |
陈岩,高伟,王东,等.缺水地区人类活动净氮输入与河流响应特征——以海河流域为例[J]. 环境科学学报, 2016,36(10):3600-3606. Chen Y, Gao W, Wang D, et al. Net anthropogenic nitrogen inputs (NANI) and riverine response in water shortage region:A case study of Haihe River watershed[J]. Acta Scientiae Circumstantiae, 2016, 36(10):3600-3606.
|
[38] |
苏泳松,宋松,陈叶,等.珠江三角洲人类活动净氮输入时空特征及其影响因素[J]. 生态环境学报, 2022,31(8):1599-1609. Su Y S, Song S, Chen Y, et al. Temporal and spatial characteristics of net anthropogenic nitrogen input and its influencing factors in the Pearl River Delta[J]. Ecology And Environmental Sciences, 2022, 31(8):1599-1609.
|
[39] |
王雨蓉,曾庆敏,陈利根,等.新安江流域人类活动净氮输入的时空变化及其对生态补偿的响应[J]. 生态与农村环境学报, 2021, 37(4):465-473. Wang Y R, Zhen Q M, Chen L G, et al. Spatio-temporal variation in net anthropogenic nitrogen input to the Xin'an River Basin and its responses to payments for ecosystem services[J]. Journal of Ecology and Rural Environment, 2021,37(4):465-473.
|
[40] |
丁雪坤,王云琦,韩玉国,等.三峡库区人类活动净氮输入量估算及其影响因素[J]. 中国环境科学, 2020,40(1):206-216. Ding X K, Wang Y Q, Han Y G et al. Estimation of human net nitrogen input and its influencing factors in the Three Gorges Reservoir Area[J]. China Environmental Science, 2020,40(1):206-216.
|
[1] |
SUN Wei, LI Yi-ping, ZHU Li-qin, ZHANG Hai-kuo, YAN Chun-min, SHANG He-qin, SONG Cong-qing, LI Da-sheng, WANG Ling, SUN Jia-xin. Effects of influent nitrogen composition on nitrogen removal and N2O emissions in surface flow constructed wetland with micro-polluted water[J]. CHINA ENVIRONMENTAL SCIENCECE, 2023, 43(8): 4013-4023. |
|
|
|
|