|
|
Spatial correlation network and influencing factors of municipal solid waste carbon emission efficiency |
GAO Yu-xin1,2, GAO Ming1,2 |
1. School of Economics and Management, Fuzhou University, Fuzhou 350116, China; 2. Fujian Green Development Institute, Fuzhou University, Fuzhou 350116, China |
|
|
Abstract This paper adopted the undesired output SBM model to measure and evaluate the municipal solid waste carbon emission efficiency in 30 provinces of China from 2005 to 2020. With the help of the social network analysis method (SNA) and the quadratic assignment procedure (QAP), the structural characteristics and influencing factors of the spatial correlation network of municipal solid waste carbon emission efficiency in China were discussed. The results showed that:Except Beijing, Inner Mongolia, Shanghai, Jiangsu and Fujian, the average of municipal solid waste carbon emission efficiency in other provinces was less than 1, and the provinces with higher efficiency were mainly located in eastern region. The tightness of the spatial correlation network of municipal solid waste carbon emission efficiency in China had improved in fluctuation, but there was still room for improvement. The network structure showed good accessibility and stability. The eastern provinces were in the relative center of the spatial network, and played a strong leading role in the spatial network, while the central and western provinces were at the edge, and played an intermediary and transmission role. The spatial correlation network of municipal solid waste carbon emission efficiency was divided into net spillover, net benefit, and broker segments. There were few internal connections among each segment, and close connections between segments,with strong spatial spillover effects. Spatial adjacency difference,economic development level difference, scientific and technological level difference, and municipal solid waste treatment structure difference had a significant impact on the formation of municipal solid waste carbon emission efficiency correlation network in China.
|
Received: 23 April 2023
|
|
|
|
|
[1] |
魏潇潇,王小铭,李蕾,等.1979~2016年中国城市生活垃圾产生和处理时空特征[J]. 中国环境科学, 2018,38(10):3833-3843. Wei X X, Wang X M, Li L, et al. Temporal and spatial characteristics of municipal solid waste generation and treatment in China from 1979 to 2016[J]. China Environmental Science, 2018,38(10):3833-3843.
|
[2] |
吴昊,刘宏博,田书磊,等.城市生活垃圾焚烧飞灰利用处置现状及环境管理[J]. 环境工程技术学报, 2021,11(5):1034-1040. Wu H, Liu H B, Tian S L, et al. Current situation for utilization and disposal and environmental management of fly ash from municipal solid waste incineration [J]. Journal of Environmental Engineering Technology, 2021,11(5):1034-1040.
|
[3] |
Chu X, Jin Y Y, Wang X, et al. The evolution of the spatial-temporal differences of municipal solid waste carbon emission efficiency in China [J]. Energies, 2022,15(11):3987.
|
[4] |
袁长伟,张帅,焦萍,等.中国省域交通运输全要素碳排放效率时空变化及影响因素研究[J]. 资源科学, 2017,39(4):687-697. Yuan C W, Zhang S, Jiao P, et al. Temporal and spatial variation and influencing factors research on total factor efficiency for transportation carbon emissions in China [J]. Resources Science, 2017,39(4):687-697.
|
[5] |
张广泰,贾楠.中国建筑业碳排放效率测度与空间关联特征[J]. 科技管理研究, 2019,39(21):236-242. Zhang G T, Jia N. Measurement and spatial correlation characteristics of carbon emission efficiency in China's construction industry [J]. Science and Technology Management Research, 2019,39(21):236-242.
|
[6] |
吴贤荣,张俊飚,田云,等.中国省域农业碳排放:测算、效率变动及影响因素研究——基于DEA-Malmquist指数分解方法与Tobit模型运用[J]. 资源科学, 2014,36(1):129-138. Wu X R, Zhang J B, Tian Y, et al. Provincial agricultural carbon emissions in China:Calculation,performance change and influencing factors [J]. Resources Science, 2014,36(1):129-138.
|
[7] |
吴昊玥,黄瀚蛟,何宇,等.中国农业碳排放效率测度,空间溢出与影响因素[J]. 中国生态农业学报(中英文), 2021,29(10):1762-1773. Wu H Y, Huang H J, He Y, et al. Measurement,spatial spillover and influencing factors of agricultural carbon emissions efficiency in China [J]. Chinese Journal of Eco-Agriculture, 2021,29(10):1762− 1773.
|
[8] |
周五七,聂鸣.中国工业碳排放效率的区域差异研究——基于非参数前沿的实证分析[J]. 数量经济技术经济研究, 2012,29(9):58-70,161. Zhou W Q, Nie M. Regional differences in the efficiency of industrial carbon emissions in China [J]. Journal of Quantitative & Technological Economics, 2012,29(9):58-70,161.
|
[9] |
何建坤,苏明山.应对全球气候变化下的碳生产率分析[J]. 中国软科学, 2009,(10):42-47,147. He J K, Su M S. Carbon productivity analysis to address global climate change [J]. China Soft Science, 2009,(10):42-47,147.
|
[10] |
赵奥,武春友.中国碳排放强度与煤炭消耗的冲击效应分析[J]. 中国人口.资源与环境, 2011,21(8):107-112. Zhao A, Wu C Y. Analysis of impact effect imposed on carbon emission intensity and coal consumption of China [J]. China Population,Resources and Environment, 2011,21(8):107-112.
|
[11] |
Teng X Y, Liu F P, Chiu Y H. The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model [J]. Energy, 2021,216:119301.
|
[12] |
王兆峰,杜瑶瑶.基于SBM-DEA模型湖南省碳排放效率时空差异及影响因素分析[J]. 地理科学, 2019,39(5):797-806. Wang Z F, Du Y Y. Spatial-temporal differences and influencing factors of carbon emission efficiency in Hunan province based on SBM-DEA model [J]. Scientia Geographica Sinica, 2019,39(5):797-806.
|
[13] |
董锋,刘晓燕,龙如银,等.基于三阶段DEA模型的我国碳排放效率分析[J]. 运筹与管理, 2014,23(4):196-205. Dong F, LIiu X Y, Long R Y,et al. Analysis of carbon emission efficiency in China based on three-stage DEA model [J]. Operations Research and Management Science, 2014,23(4):196-205.
|
[14] |
宁论辰,郑雯,曾良恩.2007~2016年中国省域碳排放效率评价及影响因素分析——基于超效率SBM-Tobit模型的两阶段分析[J]. 北京大学学报(自然科学版), 2021,57(1):181-188. Ning L C, Zheng W, Zeng L E. Research on China's carbon dioxide emissions efficiency from 2007 to 2016:based on two stage super efficiency SBM model and Tobit model [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2021,57(1):181-188.
|
[15] |
Wang S J, Ma Y Y. Influencing factors and regional discrepancies of the efficiency of carbon dioxide emissions in Jiangsu,China [J]. Ecological Indicators, 2018,90:460-468.
|
[16] |
李建豹,黄贤金,揣小伟,等.长三角地区碳排放效率时空特征及影响因素分析[J]. 长江流域资源与环境, 2020,29(7):1486-1496. Li J B, Huang X J, Chuai X W. Spatio-temporal characteristics and influencing factors of carbon emissions efficiency in the Yangtze River Delta region [J]. Resources and Environment in the Yangtze Basin, 2020,29(7):1486-1496.
|
[17] |
Cao P, Li X X, Cheng Y,et al. Temporal-spatial evolution and driving factors of global carbon emission efficiency [J]. International Journal of Environmental Research and Public Health, 2022,19(22):14849.
|
[18] |
李慧,李玮,姚西龙.中国省域全要素碳排放效率空间特征与动态收敛性研究[J]. 科技管理研究, 2019,39(19):98-103. Li H, Li W, Yao X L. Spatial characteristics and dynamic convergence research on provincial total factor carbon emissions efficiency in China [J]. Science and Technology Management Research, 2019, 39(19):98-103.
|
[19] |
胡剑波,王楷文.中国省域碳排放效率时空差异及空间收敛性研究[J]. 管理学刊, 2022,35(4):36-52. Hu J B, Wang K W. Study on temporal and spatial differences and spatial convergence of provincial carbon emission efficiency in China [J]. Journal of Management, 2022,35(4):36-52.
|
[20] |
Li J. Evaluation and convergence analysis of carbon emission efficiency in the Yangtze River economic belt [J]. Journal of Environmental Protection and Ecology, 2018,21(6):2020-2031.
|
[21] |
余恒,夏敏,邹伟.长三角城市群生活垃圾处理效率时空演变研究[J]. 统计与决策, 2021,37(7):76-80. Yu H, Xia M, Zhou W. Study on the spatial-temporal evolution of municipal solid waste treatment efficiency in the Yangtze River Delta urban agglomeration [J]. Statistics & Decision, 2021,37(7):76-80.
|
[22] |
Zhou A, Wang W N, Chu Z J, et al. Evaluating the efficiency of municipal solid waste collection and disposal in the Yangtze River Delta of China:A DEA-model [J]. Journal of the Air&Waste Management Association, 2022,72(10):1153-1160.
|
[23] |
Yang Q, Fu L M, Liu X X, et al. Evaluating the efficiency of municipal solid waste management in China [J]. International Journal of Environmental Research and Public Health, 2018,15(11):2448.
|
[24] |
刘蔚玲,肖黎姗,林剑艺,等.基于DEA-Malmquist的我国城市生活垃圾管理效率评价[J]. 中国环境科学, 2020,40(7):3196-3203. Liu W L, Xiao L S, Lin J Y, et al. Evaluation on the efficiency of municipal solid waste management in cities of China based on DEA-Malmquist [J]. China Environmental Science, 2020,40(7):3196-3203.
|
[25] |
Salazar-Adams A. The efficiency of municipal solid waste collection in Mexico [J]. Waste Management, 2021,133:71-79.
|
[26] |
Fan X H, Yu B, Chu Z J, et al. A stochastic frontier analysis of the efficiency of municipal solid waste collection services in China [J]. Science of the Total Environment, 2020,743:140707.
|
[27] |
Cohen C, Halfon E, Schwartz M. Trust between municipality and residents:A game-theory model for municipal solid-waste recycling efficiency [J]. Waste Management, 2021,127:30-36.
|
[28] |
Zhao W, Huppes G, van der Voet E. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management:A case study of Tianjin,China [J]. Waste Management, 2011,31(6):1407-1415.
|
[29] |
Yang Z F, Zhou X C, Xu L Y. Eco-efficiency optimization for municipal solid waste management [J]. Journal of Cleaner Production, 2015,104:242-249.
|
[30] |
Paes M X, de Medeiros G A, Mancini S D, et al. Transition towards eco-efficiency in municipal solid waste management to reduce GHG emissions:The case of Brazil [J]. Journal of Cleaner Production, 2020, 263:121370.
|
[31] |
Tone K. A slacks-based measure of super-efficiency in data envelopment analysis [J]. European Journal of Operational Research, 2002,143(1):32-41.
|
[32] |
郑航,叶阿忠.空间关联网络结构特征的减排效应:基于城市群视角[J]. 环境科学, 2022,43(10):4401-4407. Zheng H, Ye A Z. Carbon emission reduction effect of spatial correlation network structure characteristics:From the perspective of urban agglomeration [J]. Environmental Science, 2022,43(10):4401-4407.
|
[33] |
张明斗,翁爱华.数字经济空间关联网络的产业结构变迁效应研究——基于网络节点中心性分析视角[J]. 产业经济研究, 2022,(6):129-142. Zhang M D, Weng A H. Research on the effect of industrial structure change of spatial correlation network of digital economy:Based on the analysis of network centrality [J]. Industrial Economics Research, 2022,(6):129-142.
|
[34] |
蔡秀亭,吕洁华,王成齐.中国森林生态安全空间关联的网络特征及其驱动机制[J]. 自然资源学报, 2022,37(8):2137-2152. Cai X T, Lv J H, Wang C Q. The network characteristics and driving mechanism of the spatial correlation of forest ecological security in China [J]. Journal of Natural Resources, 2022,37(8):2137-2152.
|
[35] |
孙中瑞,樊杰,孙勇,等.中国绿色科技创新效率空间关联网络结构特征及影响因素[J]. 经济地理, 2022,42(3):33-43. Sun Z R, Fan J, Sun Y, et al. Structural characteristics and influencing factors of spatial correlation network of green science and technology innovation efficiency in China [J]. Economic Geography, 2022,42(3):33-43.
|
[36] |
刘军.整体网分:UCINET软件实用指南(第二版) [M]. 上海:格致出版社, 2014:16-234. Liu J. Lecture on whole network approach:A practical guide to UCINET (2nd) [M]. Shanghai:Gezhi Publishing House, 2014:16-234.
|
[37] |
Wasserman S, Faust K. Social Network Analysis:Methods and Applications [M]. London:Cambridge University Press, 1994.
|
[38] |
Doreian P, Conti N. Social context,spatial structure and social network structure [J]. Social Networks, 2012,34(1):32-46.
|
[39] |
Barnett G A. Encyclopedia of Social Networks [M]. Beverly Hills:SAGE Publications, 2011.
|
[40] |
Lin B Q, Ma R Y. Green technology innovations,urban innovation environment and CO2 emission reduction in China:Fresh evidence from a partially linear functional-coefficient panel models [J]. Technological Forecasting & Social Change, 2022,176:121434.
|
[41] |
Wang Z H, Geng L W. Carbon emissions calculation from municipal solid waste and the influencing factors analysis in China [J]. Journal of Cleaner Production, 2015,104:177-184.
|
[42] |
李欢,金宜英,李洋洋.生活垃圾处理的碳排放和减排策略[J]. 中国环境科学, 2011,31(2):259-264. Li H, Jin Y Y, Li Y Y. Carbon emission and its reduction strategies during municipal solid waste treatment [J]. China Environmental Science, 2011,31(2):259-264.
|
[43] |
Liu Y, Wang J L. Spatiotemporal patterns and drivers of carbon emissions from municipal solid waste treatment in China [J]. Waste Management, 2023,168:1-13.
|
[44] |
郭宇杰,龚亚萍,邹玉飞,等.天津市生活垃圾处理碳排放时间变化特征及影响因素[J]. 环境工程技术学报, 2022,12(3):834-842. Guo Y J, Gong Y P, Zou Y F, et al. Temporal variation characteristics and influencing factors of carbon emissions from municipal solid waste treatment in Tianjin [J]. Journal of Environmental Engineering Technology, 2022,12(3):834-842.
|
[45] |
王建康,谷国锋,姚丽,等.中国新型城镇化的空间格局演变及影响因素分析——基于285个地级市的面板数据[J]. 地理科学, 2016, 36(1):63-71. Wang J K, Gu G F, Yao L, et al. Analysis of new urbanization's spatial pattern evolution and influence factors in China [J]. Scientia Geographica Sinica, 2016,36(1):63-71.
|
[46] |
Liu S N, Xiao Q T. An empirical analysis on spatial correlation investigation of industrial carbon emissions using SNA-ICE model [J]. Energy, 2021,224:120183.
|
|
|
|